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ABSTRACT

Spatial regularization (SR), being an effective tool to alleviate
the boundary effects, can significantly improve the accuracy
and robustness of correlation filters (CF) based visual object
tracking. The core of SR is a spatially variant weight map
that is used to regularize the online learned correlation filters
by selecting more meaningful samples. However, most ex-
isting trackers apply a data-independent SR weight map. In
this paper, we show that a content-related spatial regulariza-
tion (CRSR) can help to further boost both the tracking ac-
curacy and robustness. Specifically, we present to consider
both frame saliency and spatial preference to online gener-
ate the CRSR weight map and propose a simple yet effec-
tive saliency-embedded CF objective function to simultane-
ously optimize the filters and CRSR weight map in spatial-
temporal domain. Extensive experiments validate that our
content-related SR outperforms the classical SR, with higher
tracking accuracy and almost two times faster speed.

Index Terms— Object Tracking, Correlation Filters,
Content-Related Spatial Regularization, Saliency Guidance

1. INTRODUCTION

Visual object tracking is an important task in computer vi-
sion and has many applications, such as robotic service, hu-
man motion analyses and autonomous driving. One of the
main challenges of object tracking is to address the targets’
appearance change over time. Despite great progress in re-
cent years, it remains a challenging problem while handling
all factors from the background and targets themselves such
as occlusions, deformations and illumination variations [1].
Recently, correlation filters (CF) tracking [2, 3], being one
of the best tracking frameworks, has shown continuous per-
formance improvement in terms of accuracy and robustness
on various benchmarks [1, 4]. There are two main ways to
enhance CF tracking, i.e. using more discriminative features
and building more effective filter learning method. In the first
way, besides intensity feature [2], HOG [3], Color [5], deep
features [6] and feature fusion [7] are used to improve the
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CF tracking. These methods, however, do not consider an in-
herent drawback of CF, i.e. boundary effects introduced by
circular shifting, thus learn less discriminative filters. In the
second way, several trackers e.g. SRDCF [8], CCOT [9] and
ECO [10], is designed to address this problem by using a spa-
tially variant weight map to regularize correlation filters and
has achieved the best performance on popular benchmarks,
e.g. OTB [1] and VOT [4]. However, the weight map for spa-
tial regularization (SR) is generated according to the bound-
ing box of the target, given at the first frame and fixed during
the whole tracking process, which loses sight of the object
content information. Such designing is clearly not suitable
for object tracking that usually address irregular, nonrigid and
temporally changing objects, e.g. a player shown in Fig. 1. As
shown in Fig. 1, a basketball player keeps running and chang-
ing during the whole sequence and is represented by a bound-
ing box containing a lot of background information, which
makes the spatial regularization weight map constructed from
such bounding box become less effective. SRDCF thus can-
not locate and wrap the player accurately.

To alleviate such problem, we propose content-related
spatial regularization for correlation filters (CRSRCF), which
introduces the saliency information and online learned filters
into the SR weight map shown in Fig. 1 with the consideration
of target content information, i.e. the shape and variation. As
a result, CRSRCF can track the irregular, nonrigid and tem-
porally changing targets accurately. Specifically, we first pro-
pose static content-related SR by introducing target saliency
map into the SR weight map to highlight the target while sup-
pressing the surrounding at the first frame. We then propose a
simple yet effective saliency-embedded CF objective function
to simultaneously optimize filters and SR weight map. Ex-
periments results show that our approach helps SRDCF track
irregular, nonrigid and variational target accurately and gets
much better performance than several state-of-the-art track-
ers on OTB-2015 [1].

2. BACKGROUND

Discriminative correlation filters. Given a d-dimension fea-
ture map X extracted from an image region and a desired
output Y labeling the object likelihood of each location in
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Fig. 1. Examples of our CRSR and SRDCF. CRSR updates the spatially variant weight map temporally via the saliency
information and online learned filters. Our CRSRCF framework updates the correlation filters and the weight map alternately,
which makes the weight map contain both object variation and the learned filters to adapt the object appearance suitably.

X, DCF aims to learn multi-channel convolution filters F that
can detect the same object in a new region. We denote X' as
the [-th channel [ € {1, ..., d} of X, and F! as the [-th channel
of F correspondingly. The correlation response of F and X is

d
C(X)=> X'«F (1)
=1

where “x’ denotes circular convolution. The objective func-
tion of DCF is to minimize the L2-error between the response
C(X) and the desired output Y

d
E(F) = [C(X) - Y|> + A > ||F)". )
=1

Spatially regularized discriminative correlation filters.
SRDCEF introduces a spatial regularization (SR) term within
the DCF to address its boundary effects. SR replaces the reg-
ularization term in DCF and gets a new objective function

d
le*Fl—Y
=1

where ‘©®’ is the element-wise multiplication. The spatial reg-
ularization weight map W penalizes F! by assigning higher
weights to the outside target region and lower weights to the
inside target region to alleviate boundary effects. The weight
map is constructed through following equation

2 4
+S WeF |, ®

=1

E(F) =

Lo

Wer(x) =€+ (a:—T

P (F5E @
where x = (x, y) denotes the coordinate in the search region,
and (z,, ¥, ) denotes the center of the search region and w X h
is the target size, while £ and 7 are fixed parameters. By the
construction of the weight map, the weight values are decided
by spatial distance and target size in the first frame, without
the consideration of the target shape and variation.

Other related work. Recently, several methods [11, 12,
10, 13, 14] are proposed to improve tracking accuracy by
learning effective filters through mining information from tar-
get content. CFLB [11] proposes to alleviate boundary effects

of CF by selecting effective training samples. CSR-DCF [12]
improves CFLB by adopting a spatial reliability map to adapt
the filters support to the parts of target suitable for tracking.
C-COT [9] and ECO [10] improves the SRDCF by learning
filters on the continuous domain and selecting effective fea-
tures for efficient tracking. DSiam [13] maintains two online
transformations for both target and background. Although
success, all above methods do not consider the saliency of the
target around its location, which is also useful information to
separate the target from background.

3. CONTENT-RELATED SPATIAL
REGULARIZATION FOR CF TRACKING

We propose content-related spatial regularization (CRSR) for
CF by online constructing a saliency-embedded weight map.
We first present static CRSR whose weight map is constructed
from the saliency detection of the first frame and fixed dur-
ing the whole tracking process. We then extent such method
to a temporal version through a saliency-embedded objec-
tive function that can optimize both correlation filters and the
weight map efficiently.

3.1. Static content-related spatial regularization

Given the first frame of a sequence, we crop a region that is
22 times larger than the bounding box of the target. We then
adopt the saliency detection method proposed by [15] to de-
tect saliency within the region and get a saliency map S with
the values between [0, 1]. To make S work as a weight map
that has low values on target and high values on background,
we adjust it via

1

S'(x) = T uSKx)’ )

where the values of S’(x) are within [ﬁ, 1] with values of

the object region approximating to ﬁ and the surrounding
region approximating to 1. We then obtain the weight map
denoted as W R via

Wer =8 © Weg, (6)
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Fig. 2. Pipeline of CRSR based CF tracking. Static CRSR introduces the object saliency map of the first frame into the spatially
variant weight map to highlight the target region. On this basis, temporal CRSR updates the weight map temporally through
the saliency map and online learned filters to make the filters adapt the object variation better in filters learning.

where we pad S’ with 1 to keep the same size with Wgg.
The objective function Eq. (3) thus can be replaced by

2

d
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With such objective function, we can construct a tracker that
online learns the filters via the saliency-embedded weight
map, i.e. Wcgr. Since Wep is fixed during the tracking
process after constructed at the first frame, we denote such
method as static CRSR. We will show that static CRSR im-
proves the tracking accuracy of classical SR while maintain-
ing the speed in Section 4.

3.2. Temporal content-related spatial regularization

We have introduced the content information into the spatial
weight map in the first frame (static CRSR), however, for the
tracking problem, the shape and size of tracking object are al-
ways changing over time. The spatial weight map initialized
in the first frame and fixed in subsequent frames is uncon-
scionable. Here, we introduce the object variation informa-
tion to update the spatial weight map temporally.

As discussed above, we propose a new objective function
to replace the function Eq. (3)

d 2
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where the W and S are the spatial weight map and the object
saliency map respectively, and Wgg is the original weight
map by Eq. (4). For this energy function, the first two terms
are same to Eq. (3), while the last two terms are the bound
terms of W. Specifically, the first bound term is to decrease
the value of Wt in object saliency region, due to the val-
ues of the saliency map in object region are positive while in
non-object region are zeros. And the second bound term is

to constraint the W similar with the original spatial weight
map to ensure the integral spatial regularization.

The objective function Eq. (8) involves two variables F
and W, as for as F, the function is same as Eq. (3), and as
for as W, the objective function can be extracted as

d
E(Wr) =Y [Wr 0 B> + \[|S © W
=1
9
+X2|[Wr — Weg|%.

We utilize Eq. (9) to update the spatial weight W temporally
in each frame ¢, the gradient of E can be solved by

OE d
T = 2Wr O (Y (F)? + A1S? + \2) — 20 Wi,
T =1
(10)
By solving E)?,V—ET = 0 we get the closed-form solution
AW
- 2 Wsr an

- Ao + (GF + )\1Crs)7

where we denote Gg = i, (F' )2 as the filters guidance
map and Gg = S? as the saliency guidance map. By the so-
Iution of Eq. (11), we obtain the optimal W which contains
the object variation information for current frame.

We compare the solution of Eq. (11) of the ¢-th frame
with the operation by Eq. (6) of the 1-st frame, and apply
Eq. (11) to the first frame, due to the filters in initialization is
not learned, the Eq. (11) can be transformed into

A2 Wgr
Wp= ————. 12
T A+ MGs (12)
On the other hand, we substitute Eq. (5) into Eq. (6) and get
Wsr
Wcer = . 13
CR= 1S (13)

Therefore, we illustrate the W g is the particular case of
W, in the case of A\ = p, A = 1 and Gg = S.
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Furthermore, we observe the W updated in each frame
t by Eq. (11), which includes the saliency information ob-
tained by the saliency guidance map, as well as the object
spatial preference obtained by the online learned filters, due
to the absolute values of the filters in the object region are
higher and in the non-object region are approximate to zero.
Ablation study in Section 4.2 will evaluate the impact of the
saliency and filters guidance map respectively.

3.3. CRSR based CF tracking

Tracking algorithm. CRSR is a fundamental method by op-
timizing the SR, thus improves the performance of CF based
trackers. We show our tracking framework in Algorithm 1 .

Algorithm 1: CRSR based CF tracking

Input: Frame {I,}7, initial object bounding box B
Output: Object bounding box of each frame {B;}3
1 Initialization: initialize the correlation filters, initialize the
spatial weight map Wo = Wcr by Eq. (6).
2 Learn F; by minimizing Eq. (8), update W by the solution
Eq. (11) via the first frame with given bounding box, ¢t = 2.
3 whilet < T do

4 Crop an image region R; from I, at the last bounding
box B;_1 and extract its feature map X;.
5 Detect the object location p; by calculating the response

by Eq. (1) via X; and F;_; and the estimate the scale of
the target as [8], thus get B;.

6 Learn F; by minimizing Eq. (8) using Gauss-Seidel
iteration via X; and W;_1.

7 Update W; by the closed-form solusion Eq. (11) via S;
and F;.

8 t=1t+1

9 return {B,}3.

Implementation details. We use HOG [16] as feature
same as SRDCF [8]. We set u = 2 in Eq. (5). We calculate
Gy in Eq. (11) and normalize it into [0, 1] same as Gg, and
we set Ay = 0.75, Ay = 1in Eq. (11). In our CRSRCF, we
update the filters and SR weight map in every 7 frames, and
set 7 = 2 in our experiments. All parameters have straight-
forward interpretation, do not require fine-tuning.

4. EXPERIMENTAL RESULTS

4.1. Setup

Our Matlab implementation runs on an Intel Core i7 3.4GHz
standard desktop. We validate our proposed method by per-
forming comprehensive experiments on standard benchmarks
OTB-2015 [1] containing 100 videos, for the OTB-2015 we
use the one-pass evaluation (OPE) with precision and success
plots metrics. We provide a comparison of our tracker with 8
well-known state-of-art methods including: KCF [3], SAMF
[7], DSST [17], Staple [18], SRDCF [8], CSR-DCF [12],

Table 1. Ablation study of CRSRCFE. Tracking results
of SRDCF and SRDCF with the filters update frequency
of 2 frames (SRDCF,_,), and the static content-related
SRCF (CRSRCFg.) and temporal content-related SRCF
(CRSRCF), as well as CRSRCF without saliency guidance
map CRSRCFns, without filters guidance map CRSRCFnr.

Trackers Prec.  Succ.rate Trackers Prec. Succ.rate
SRDCF 78.9 59.8 CRSRCFys 77.8 60.1
SRDCF,—> 77.0 58.7 CRSRCFnp 78.2 59.9
CRSRCFgic 79.4 60.1 CRSRCF  79.5 60.7

LMCEF [19] and CFNet [20]. Most of them are designed with
conventional hand-crafted features and the version of CFNet
we use is Baseline+CF-conv3 [20]. Among them, KCF is the
fundamental CF based tracker, SAMF, DSST, SRDCEF, Staple
are follow-up trackers based on CF, CFNet, CSR-DCF and
LMCEF are the up to date CF based trackers.

4.2. Ablation study

In this section, we conduct ablation analysis to compare the
performance of our static and temporal CRSRCF with the
SRDCEF. In addition, we also evaluate the impact of saliency
guidance map and filters guidance map in Eq. (11) of tempo-
ral CRSR. Lastly, we discuss the influence of filters update
frequency 7 of CRSRCF and SRDCF.

The average distance precision score at 20 pixels and the
area-under-the-curve (AUC) score for success rate on OTB-
2015 of different trackers are shown in Table 1 . We first
evaluate our static CRSR in Section 3.1 and temporal CRSR
in Section 3.2 respectively on OTB-2015, AUC score for suc-
cess rate rise from 59.8% (SRDCEF) to 60.1% (CRSRCFgic)
and 60.7% (CRSRCEF). Furthermore, as shown in Table 1, we
set the saliency guidance map in Eq. (11) to a constant map
with uniform values within the bounding box and zeros else-
where (CRSRCFns), which results in a drop of precision and
success rate. Replacing the filters guidance map in Eq. (11)
by the constant map (CRSRCFnF) also results in a significant
performance drop of the AUC score compared to CRSRCF.
Finally, in CRSRCF we update the filters and spatial weight
map in every 2 frames, we change the filters update frequency
of SRDCEF to 2 frames (SRDCF,—5) accordingly, the AUC
score for success rate drops from 59.8% to 58.7%, which in-
directly illustrates that our alternately update process of the
spatial weight map and the correlation filters improves the ro-
bustness and adaptation of the filters.

4.3. Comparative results

State-of-the-art comparison. We provide a comparison of
our approach with the state-of-the-art trackers. Fig. 3 shows
the distance precision and success plot over all 100 videos
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Fig. 3. Precision plots (left) and success plots (right) show-
ing a comparison with state-of-the-art methods on OTB-2015.
The legend contains the average distance precision score at 20
pixels and the AUC score for each tracker.

of OTB-2015. The left figure shows the precision of 8 com-
parative trackers and our CRSRCEF, static CRSRCF tracker.
Our CRSRCF tracker obtains the best performance at the
precision of 79.5%, the following static CRSRCF of 79.4%.
The right figure shows the success plot of the 10 trackers,
among the state-of-the-art methods, SRDCF provides the best
results with an AUC score of 59.8%, the following CFNet
tracker achieves an AUC score of 58.9%. Our static CRSRCF,
CRSRCEF outperform other 8 trackers and obtain an AUC
score of 60.1% and 60.7% for success plot respectively.

Attribute based comparison. We also perform an at-
tribute based analysis of our tracker on the OTB-2015 dataset.
The 100 videos are annotated with 11 attributes: scale varia-
tion, deformation, out-of-plane rotation, occlusion, etc. Fig. 5
shows example success plots of four typical attributes to illus-
trate the advantage of our method. The results indicate that
our CRSRCF tracker is effective in handling scale variation,
in which SRDCEF get the state-of-the-art performance, due to
the proposed SR enables an expansion of the image region
used for training the filter. However, it does not perform well
as our CRSRCF with the temporal object saliency information
to highlight the object appearance, which makes significant
improvements in object scale variation. We have also found
similar performance in deformation and out-of-plane rotation,
where Staple proposed a combination of template and his-
togram scores to deal with the object deformations and LMCF
proposed multimodal target detection to prevent model drift
introduced by background noise. But our CRSRCF with the
temporal saliency information and online learned filters inte-
grated into the framework and optimized as a whole, which
introduces the object variation in filters learning therefor get
the best performance in these two scenarios. Finally, for oc-
clusion, our filters update frequency contributes to stabilizing
the filters learning, especially in scenarios where the object is
affected by sudden changes, such as occlusions.

Qualitative results. Fig. 4 shows the tracking results of
CRSRCEF and other four CF-based trackers, i.e. KCF [3], Sta-
ple [18], CSR-DCF [12] and SRDCF [8] on OTB-2015 in
cases of scale variation (first row-Human9), deformation (sec-
ond row-shakingl), rotation (third row-Sylvester) and occlu-

Staple KCF

CRSRCF SRDCF

CSR-DCF

Fig. 4. Qualitative evaluation of our CRSRCF, SRDCF, CSR-
DCEF, Staple, KCF on three representative sequences.

Table 2. Success rates (% at IoU>0.50 and AUC score) of
CRSRCEF versus related trackers, and the weighted average
speed on OTB-2015 dataset.

KCF CFLB SRDCF CSR-DCF  CRSRCF
(PAMI2015)  (CVPR20IS)  (ICCV2015) (CVPR2017) (Ours)
Succ.rate (IoU)  55.1 44.7 72.8 69.1 74.5
Succ.rate (AUC) 47.7 41.5 59.8 57.6 60.7
Avg.FPS 153.46 87.1 35 7.5 6.4

sion (last row-Human3). In CRSRCEF, we temporally update
spatial weight map via the saliency information and online
learned filters, which makes our tracker obtain more object
content and track irregular object accurately. Experimental
results confirm the strength of our method in tracking the ir-
regular, nonrigid and variational target.

4.4. Speed analysis

Tracking speed is a considerable factor in tracking problems.
Table 2 compares several related and well-known CF based
trackers. Among these trackers, KCF [3] is the fundamental
CF based tracker, and CFLB [11], CSR-DCF [12], SRDCF
[8] are all proposed to adapt the filters support to the part of
the object suitable for CF tracking. We calculate the average
speed with the weights of the number of frames per video.
Speed and performance measures on OTB-2015 are shown in
Table 2 , results show that our CRSR can improve the origi-
nal SRDCEF tracker in both performance and speed as well as
achieve the state-of-the-art tracking performance.
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Fig. 5. Attribute-based analysis of our approach on the OTB-2015 dataset with 100 videos. Success plots are shown for four
attributes. Our approach demonstrates superior performance compared to existing trackers in these scenarios.

5. CONCLUSION

In this paper, we have revisited the spatially regularized corre-
lation filters (SRDCF) to conquer its drawbacks in tracking ir-
regular, nonrigid and rapidly-changing objects. We have pro-
posed an effective content-related spatial regularization for
correlation filters (CRSRCF) by online constructing image
saliency related spatial regularization (SR) weight map and a
fast way to online learn both the filters and the regularization
map. Experimental results on benchmark OTB-2015 dataset
have showed that our approach significantly outperformed the
state-of-the-art SRDCF with higher accuracy, robustness and
speed. Our tracker performs especially well in tracking irreg-
ular and nonrigid objects. In the future, we want to investi-
gate how to generally apply the proposed CRSR to more CF
trackers, e.g. [21, 22], to achieve better tracking performance.
We can further improve CRSR by using structure information
from superpixel and object segmentation [23, 24].
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