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Dynamic Saliency-Aware Regularization for
Correlation Filter-Based Object Tracking
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Abstract— With a good balance between tracking accuracy
and speed, correlation filter (CF) has become one of the best
object tracking frameworks, based on which many successful
trackers have been developed. Recently, spatially regularized CF
tracking (SRDCF) has been developed to remedy the annoying
boundary effects of CF tracking, thus further boosting the
tracking performance. However, SRDCF uses a fixed spatial
regularization map constructed from a loose bounding box
and its performance inevitably degrades when the target or
background show significant variations, such as object defor-
mation or occlusion. To address this problem, we propose a
new dynamic saliency-aware regularized CF tracking (DSAR-CF)
scheme. In DSAR-CF, a simple yet effective energy function,
which reflects the object saliency and tracking reliability in
the spatial–temporal domain, is defined to guide the online
updating of the regularization weight map using an efficient level-
set algorithm. Extensive experiments validate that the proposed
DSAR-CF leads to better performance in terms of accuracy and
speed than the original SRDCF.

Index Terms— Correlation filter, object tracking, saliency,
dynamic spatial regularization, level-set optimization.

I. INTRODUCTION

V ISUAL object tracking is a very important task in com-
puter vision which is widely used in robotic service,

human motion analyses, autonomous driving and many other
applications. The main challenge of object tracking comes
from a variety of target’s unpredictable transformations over
time. Such transformations, which occur under object occlu-
sions, object deformations, background clutters, and many
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other scenarios, may cause the failure of identifying the
tracking target in the new frame based on its appearance
features in the previous frames.

In recent years, correlation filter (CF) has been used in
visual object tracking with a good balance between tracking
accuracy and speed. In CF tracking, the target in a new frame
is located by a circular convolution operation, which can
be implemented by efficient Fast Fourier Transform (FFT).
One issue in CF tracking is the undesired boundary effects
introduced by the circular shifts of training samples [3], that
usually lead to degraded tracking performance [16]. To alle-
viate the boundary effects, a spatial regularization component
can be incorporated to penalize the CF values, resulting in
spatially regularized CF tracking (SRDCF) [9]. In SRDCF,
the regularization component requires the definition of a
spatial weight map to penalize the CF values in non-target
regions. In practice, this weight map is simply computed
using each pixel’s distance to the region center and does not
change over time after being initialized in the first frame.
However, in real-world tracking tasks, object shape is usually
non-centrosymmetrical and irregular in the tracking process
and may change frequently over time. From this perspective,
it is unconscionable to define a constant regularization weight
map using only the spatial distance to the map center since
it is likely to learn much undesired background information
in the CF filtering. In this paper, we consider object shape
and variation information into the regularization component
to more accurately penalize the filter values outside the object
boundary and overcome the limitation of the fixed regulariza-
tion weight map in SRDCF [9].

More specifically, we propose a dynamic saliency-aware
regularized CF tracking (DSAR-CF), which introduces the
saliency information and dynamic variations into the regular-
ization component. As shown in Figure 1, a basketball player
keeps running with varying shape along a video and is repre-
sented by a bounding box, which contains much background
information, in each frame. In the proposed DSAR-CF, we first
introduce object saliency information into the regularization
weight map to highlight the appearance of the player as well
as suppressing the background information around the player
in the first frame. We then propose a strategy to dynamically
update the regularization weight map to reflect the player’s
shape variations in the subsequent frames. We then develop
a level-set algorithm to iteratively optimize the regularization
weight map in each frame. Experimental results show that the
proposed DSAR-CF outperforms the baseline tracker SRDCF
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Fig. 1. An illustration of the proposed dynamic saliency-aware regularized CF tracking (DSAR-CF), where saliency information and dynamic shape variation
are considered in regularization weight map. On the contrary, the traditional spatially regularized CF tracking (SRDCF) only considers the spatial distance
and remains unchanged in tracking. At the bottom of the figure shows the intersection-over-union (IoU) curve between predicted and ground truth bounding
boxes of target tracked by DSAR-CF and SRDCF, respectively.

and produces much better performance than several state-of-
the-art trackers on standard benchmarks i.e. OTB-2013 [44],
OTB-2015 [45] and VOT-2016 [27].

II. RELATED WORK

In this section, we briefly overview the related work on CF
tracking, spatially regularized CF tracking and other tracking
methods.

A. Correlation Filter for Tracking

Correlation filter (CF) was used for object detection as
early as 1980’s. However, it was not applied to visual
tracking until Bolme et al. [3] proposed the Minimum Out-
put Sum of Squared Error (MOSSE) filter based tracker
in 2010, which achieved the state-of-the-art performance
on a benchmark with fast speed. CF shows two merits in
tracking: 1) CF is able to make extensive use of limited
training data by using circular-shift operations, and 2) the
computational time for training and detection is significantly
reduced by computing in the Fourier domain using FFT.
In recent years, several subsequent CF tracking methods have
shown continuous performance improvement on benchmarks.
Two typical strategies have been used to obtain better per-
formance in CF tracking – using more effective features
and using the conceptual improvement in filter learning.
In the first strategy, multi-channel feature maps [11], [23]
were integrated to CF tracking. Henriques et al. [23] pro-
posed a CF tracker with multi-channel HOG (Histogram of
Oriented Gradient) features while maintaining a high algo-
rithm speed. Danelljan et al. [11] applied multi-dimensional
color attributes and Li and Zhu [29] applied feature combi-
nation for CF tracking. Recently, deep CNN (Convolutional
Neural Network) based features have been applied to CF
tracking [10], [31] and they further improved the performance
but taking more computation time. In the second strategy,
recent conceptual improvements in filter learning include
non-linear kernelized correlation filter (KCF) proposed in [23],
accurate scale estimation in Discriminative Scale-Space Track-
ing (DSST) [8], and color statistics integration in Sum of
Template And Pixel-wise LEarners (Staple) [1]. Based on

KCF and DSST, Siena and Vijaya Kumar [37] improved CF
based trackers by adapting learning rate of correlation filter
with the guidance of an occlusion detection strategy. Although
such method helps improve tracking accuracy, it does not
consider the main drawback of CF, i.e. boundary effects.
Our method, i.e. DSAR-CF, is totally different from [37] and
alleviates boundary effects by introducing a dynamic and
saliency-aware regularization term into the objective function
of CF. As a result, DSAR-CF significantly improves tracking
accuracy of CF even under occlusion.

B. Spatial Regularization for CF Tracking

Recently, several methods [5], [7], [12], [15], [16], [18],
[22], [30], [47], [48] were proposed to improve the CF track-
ing performance by highlighting the object appearance while
suppressing the background interference. Galoogahi et al. [16]
proposed a CF tracker with limited boundary (CFLB) to reduce
the boundary effects in CF tracking. In [15], the background-
aware correlation filter (BACF) based tracking was developed
to learn CF from real negative training examples extracted
from the background. Lukezic et al. [30] proposed discrim-
inative correlation filter with channel and spatial reliabil-
ity (CSRDCF) using the spatial reliability map to adapt
the filter support to the part of object suitable for track-
ing. SRDCF [9] adopts a spatial regularization component
to penalize CF values. More recently, based on SRDCF,
Danelljan et al. [12] introduced a novel formulation for learn-
ing a convolution operator in the continuous spatial domain,
which was further enhanced to tackle the problems of com-
putational complexity and over-fitting simultaneously in [7].
Guo et al. [18] proposed a method to maintain two online
transformations for both target and background.

C. Other Related Work on Tracking

Many non-CF trackers [19], [20], [24], [41], [49] were pro-
posed to deal with various challenges in tracking, such as
occlusion, non-rigid deformation, and background clutter.
Wang et al. [41] used a multi-modal target detection technique
to prevent model drift between similar objects or noisy back-
ground. A high-confidence updating is employed to avoid the
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Fig. 2. An illustration of CF tracking from frame t − 1 to t . The black block
denotes a time delay operation.

model corruption once the target is severely occluded or totally
missing. Guo et al. [19], [20] addressed the object rotation in
tracking by incorporating structural regularization and online
data-driven sampling. Zhang et al. [49] used the correlation
particle filter for handling partial and total occlusions or
large-scale variation. Huang et al. [24] proposed a part-based
method that can capture the structure of target for alleviating
the problem of object occlusion and deformation in tracking.

In this paper, our main idea is to integrate the object varia-
tion information into the spatial weight map to boost the per-
formance of regularized CF tracking. We will include several
state-of-the-art CF and non-CF tracking methods described
above for our later comparison experiments, especially in chal-
lenging scenarios such as target deformation and occlusions.

III. PROPOSED METHOD

In this section, we first introduce the background on CF
tracking and spatially regularized CF tracking, and then intro-
duce the proposed saliency-aware regularized CF tracking.

A. CF Tracking [3]

As in many previous tracking models, the input of CF
tracking is a video sequence, together with a tight bounding
box B1, which specifies the tracking target in the first frame.
CF tracking then estimates Bt , the tight bounding box of the
target in frames t = 2, 3, · · · , sequentially. The basic idea of
CF tracking is to alternately update an M × N correlation
filter (CF) F and apply the updated CF F to locate the target
frame by frame. Without loss of generality, let us assume that
the target has been tracked in frames 1 through t − 1 and
now consider the tracking from frame t − 1 to t . CF tracking
consists of the following steps, as illustrated in Figure 2.

i) Define a target-search region in frame t . This is achieved
by dilating the bounding box Bt−1 derived in frame t −1
by a factor K ≥ 1 and overlaying the dilated box in
frame t as the search region.

ii) Compute the feature map of the search region. This is
achieved by taking the subimage in frame t inside the
dilated box, resizing the subimage into a pre-specified
dimension, and applying a feature-extraction method to
each pixel of the resized subimage to get a feature map
Rt ∈ R

M×N .
iii) Estimate the bounding box Bt in frame t . This is

achieved by applying the current CF F ∈ R
M×N to the

feature map, resulting the response map

Ct = Rt ∗ F, (1)

where ∗ denotes the circular convolution, computing the
peak location in Ct ∈ R

M×N , taking the peak’s original
location in frame t as the target center, and constructing
Bt to be of the same size as B1, but around the identified
target center in frame t .

iv) Update the CF F. This is achieved by dilating the
bounding box Bt by factor K , taking the subimage in
frame t inside the dilated box, resizing the subimage
to the pre-specified dimension, extracting a feature map
Xt ∈ R

M×N for this subimage, all as in Step i), and all
tracked frames are considered, then updating CF F by
minimizing

ECF(F) =
t∑

k=1

αk�Xk ∗ F − Yk�2 + �F�2, (2)

where Yt ∈ R
M×N is a 2D Gaussian-shape response

map with peak at its center and αk ≥ 0 is the impact
of frame k. This optimization problem can be explicitly
solved with a closed-form solution in Fourier domain.

v) With the updated CF F, go back to Step i) and track to
the next frame t + 1.

For simplicity, what we describe above is for one-channel
feature map. In practice, it can be extended to multiple-channel
feature maps by using multiple feature-extraction
algorithms [17]. As discussed in [16], the circular convolution
in Eq. (1) assumes the periodic shifts of the feature map Xt ,
which introduces the undesired boundary effects to CF based
tracking.

B. Spatially Regularized CF Tracking (SRDCF) [9]

SRDCF introduces a spatial regularization component
within the CF formulation to address the problem of boundary
effects. More specifically, in Step iv) of the above CF-tracking
algorithm, the regularization term in Eq. (2) is replaced by a
more general Tikhonov regularization in updating the filter F
in frame t , i.e., Eq. (2) is extended to

ESR(F) =
t∑

k=1

αk�Xk ∗ F − Yk�2 + �W � F�2, (3)

where � denotes the element-wise product.
For Eq. (3), SRDCF [9] suggests the use of W = WSR ∈

R
M×N , where

WSR(i, j) = a + b

(
i − M

2
w
2

)2

+ b

(
j − N

2
h
2

)2

(4)

is a 2D quadratic-shape regularization map with i = 1, · · · , M
and j = 1, · · · , N . a, b > 0 are two pre-specified coefficients
and w, h are the width and height of the target bounding
box. In SRDCF, WSR is calculated in the first frame and
does not change any more in the tracking process. Since the
target is located at the center of the subimage cropped out in
Step iv) of the above CF tracking algorithm, the use of WSR



FENG et al.: DYNAMIC SALIENCY-AWARE REGULARIZATION FOR CF-BASED OBJECT TRACKING 3235

Fig. 3. First row presents meta results of saliency detection. Second row
shows the saliency results of eight challenge cases.

suppresses the F values in the non-target region. An iterative
approach based on the Gauss-Seidel algorithm can be used
to minimize Eq. (3) for the correlation filter [9]. A scale
estimation method [8] is also used in SRDCF to estimate the
size of the bounding box in Step iii).

However, in real-world tracking tasks, the fixed weight map
WSR in SRDCF is not adaptive to the shape irregularity and
temporal change over time. In the following, we propose new
saliency-aware regularizations into CF tracking to address this
problem.

C. Static Saliency-Aware Regularized CF
Tracking (SSAR-CF)

As discussed above, we attempt to generate a new target
shape related weight map to handle the problem of shape
irregularity. Saliency detection aims to detect the salient object
and represent its shape with a binary image [25], [26], [39].
From this point, we derive the saliency map of the target
and then incorporate it into the weight map W, where we
simply multiply the saliency map with the weight map to
get a new weight map WS, to better reflect the shape of
the target. Specifically, as shown in first row of Figure 3,
with the bounding box of a target, i.e. the green box, that
is annotated in the first frame or estimated through target
detection, i.e. step iii) in Section III-A, we first crop a region
using the blue box, which centers at the green box and is
κ times larger than it. We then perform saliency detection
on the cropped region with an existing algorithm [35] and
abandon the saliency results inside the blue box outside the
green box to suppress the background clutters and distractors.
We will discuss the advantage of such abandoning strategy
in Section IV-D. Saliency result S� is then computed and
used to generate saliency map S. We present the saliency
detection results of eight challenging cases in the second row
of Figure 3. We then normalize S� to

S��(i, j) = MS − S�(i, j)

MS − mS
, (5)

where MS and mS are the maximum and minimum values
of S�. As a result, the elements of S�� takes values in [0, 1]:
target regions have values close to 0 and the surrounding
non-target regions have values close to 1. We finally uniformly
resize S�� into an M × N saliency map S to make it consistent

Fig. 4. We propose the saliency-aware spatial regularization in the filter
updating process of CF tracking. SSAR-CF introduces the saliency map into
the spatial weight map to highlight the object region. DSAR-CF further
investigate a dynamic strategy to update the spatial weight map by considering
the saliency map and response map.

to the size of weight map and correlation filter, and use S to
regularize the fixed weight map WSR of SRDCF and obtain a
new weight map

WS = S � WSR. (6)

For online object tracking, we add a step before Step i) of
CF tracking algorithm in Section III-A by using Eq. (6) to
calculate the weight map WS in the first frame, in which the
target is annotated with a given bounding box.

By setting W = WS ∈ R
M×N , the energy function of

Eq. (3) incorporates the target saliency and its minimization
using Gauss-Seidel algorithms leads a new way to update
the correlation filter in the Step iv) of the CF tracking
algorithm. We call the corresponding CF tracking algorithm
Static Saliency-Aware Regularized CF tracking (SSAR-CF)
since WS is fixed during the tracking process after computed
in the first frame. We will show that SSAR-CF improves the
tracking accuracy of the classical SRDCF while maintaining
the original speed in the later experiments.

As an alternative to Eq. (6), we can set weight map W
as S directly. However, such setup makes our tracker miss
target easily: since S shown in Figure 3 has small value within
the target and large value in the background, this setup intro-
duces strong punishment to the filter in the context of target.
As discussed in [2] and [46], the context information helps
localize the target accurately. Hence, S limits the contribution
of context to the discriminative power of the learned filter and
leads to a poor tracker. In contrast to S, WSR is a continuous
function of coordinates, and context around the target still
helps learn discriminative filter by using WSR during tracking.
However, WSR ignores the content of target, e.g. shape or
salient parts. WS actually fuses WSR and S by considering
both spatial prior and content of the target. We will compare
the different setups of W in Section IV-D to show that WS
does help get higher accuracy.
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D. Dynamic Saliency-Aware Regularized CF
Tracking (DSAR-CF)

In this section, we propose a new dynamically updated
weight map to tackle the problem of temporal target change.
We further extend the weight map W that dynamically varies
over time to better reflect the target shape variation by consid-
ering both the saliency map S and the response map C. The
saliency map S, varied from frame to frame, captures object
shape and size variation in tracking. The response map C can
help tackle the case of low object saliency, e.g., the tracking
target is occluded or surrounded by similar objects [50].

For this purpose, we set W = WD ∈ R
M×N to be the

optimal solution of

E(WD, μobj, μnon)

=
∑

(i, j )∈�obj

(S(i, j) − μobj)
2

+
∑

(i, j )∈�non

(S(i, j) − μnon)
2

+ η �WD − WSR�2 + (1 − η)
∥∥WD − W�

SR

∥∥2
, (7)

where the target region �obj and non-target region �non are
defined by

{
�obj = {(i, j)|WD(i, j) ≤ ζ },
�non = {(i, j)|WD(i, j) > ζ }, (8)

with ζ > 0 being a threshold to partition the considered
M×N domain � into target and non-target regions. In Eq. (7),
μobj and μnon are the mean values of S in �obj and �non
respectively. Minimizing the first two terms of Eq. (7) can
tune WD according to the saliency map S and embed the shape
information of target into WD. Specifically, we regard WD as a
level-set function whose ζ -level set corresponds to a contour
that is a cross section between WD and a horizontal plane
defined by ζ [33]. The contour, i.e. ζ -level set, also splits the
saliency map into two regions, i.e. �obj and �non, whose mean
values are μobj and μnon, respectively. Clearly, if �obj contains
background region of the saliency map and �non contains the
target region, the first two terms of Eq. (7) would be very large.
Hence, to minimize the first two terms of Eq. (7), WD must
be tuned to drive its ζ -level set, i.e. the contour, to the target
boundary. As a result, the shape information of the target is
naturally embedded into WD. Figure 5 shows an example of
the value change of WD in the iterative optimization. With
decreasing value of Eq. (7), the ζ -level set gradually gets
closer to the target boundary which is also embedded into WD.

And W�
SR in Eq. (7) is constructed as

W�
SR = MW + mW − WSR, (9)

where MW and mW are the maximum and minimum values
of WSR in Eq. (4). With Eq. (9), W�

SR has high penalties
on target region and low values on background as shown
in Figure 6, which avoids corrupting the filter when tracking
result is unreliable due to the interferences [50], e.g. occlusion
and background clutter. Besides, we use Eq. (9) to calculate
W�

SR to guarantee that W�
SR has the same value range as WSR,

which makes the value range of learned filter not to change

Fig. 5. (a) The value change of WD during the optimization. We iteratively
optimize WD and illustrate the intermediate results after iterations of 1, 3, 5, 8,
10 times, respectively. Vertical axis denotes the function value of the first two
terms of Eq. (7). (b) shows the coordinate space to calculate WSR. The solid
bounding box with blue color denotes the location and size of the target. The
dashed box is two times larger than the solid bounding box. We can set ζ as
the values of WSR at the points b1, a1 and c1, respectively. Note that, points
b{1,2,3,4} have the same value according the definition of WSR. (c) and (d)
shows the Heaviside step function H(z) and its derived function δ(z) when
setting three different values for σ .

with different weight maps. The impact parameter η in Eq. (7)
is produced by the response map C in Eq. (1). The basic idea is
to make WD close to WSR when the tracking result is reliable,
and close to W�

SR when tracking result is unreliable, e.g., with
target occlusions in Figure 6. In this paper, we use the PSR
(Peak to Sidelobe Ratio) [3] score of the response map C to
measure the tracking reliability and set the value of η. Given C,
we calculate the peak value ρ and the sidelobe that is the rest
of the pixels excluding an 11 × 11 window around the peak
location. The PSR score P is defined as P = ρ−μs

σs
, where μs

and σs are the mean and standard deviation of the sidelobe in
the response map C. Based on this, we set η as

η =
{

1 if ρ > τ1ρ̄ & P > τ2 P̄,

0 otherwise,
(10)

where ρ̄ and P̄ are the average values of ρ and P in all
the tracked frames, τ1, τ2 > 0 are two pre-set constant
coefficients [41]. This way, the first two terms in Eq. (7)
reflects the saliency map and the last two terms in Eq. (7)
reflects the response map.

In the first frame, we initialize WD = WS. During online
tracking, we first estimate the bounding box of a target at
frame t via step iii) in Section III-A, and obtain a weight
map WD for spatial regularization. More specifically, after
estimating the target bounding box in frame t , we then perform
saliency detection as described in Section III-C. The saliency
map St and response map Ct , are fed to Eq. (7) to get WD
using the level-set optimization in Section III-E.

We set W = WD in Eq. (3), which is then optimized
by the Gauss-Seidel algorithm for updating correlation filter
in the Step iv) of the CF tracking algorithm. We call this
tracking Dynamic Saliency-Aware Regularized CF tracking
(DSAR-CF) since the weight map dynamically varies frame
by frame. As in SRDCF, a scale estimation method [29] can
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Fig. 6. The tracking target in the green bounding box with and without
occlusion are initialized in (a), and the corresponding response maps C that
reflect the reliability of tracking results are shown in (b), on this basic,
we make WD close to WSR when the tracking result is reliable, and close to
W�

SR when tracking result is unreliable.

be used to estimate the size of the bounding box in Step iii).
In the following, we give the level-set algorithm for optimizing
Eq. (7).

E. Level-Set Optimization for WD

We use a level-set algorithm [4], [42] to minimize the
energy function defined in Eq. (7). Specifically, we first
transform Eq. (7) to

E(WD, μobj, μnon)

=
∑

(i, j )∈�

(S(i, j) − μobj)
2H(WD(i, j))

+
∑

(i, j )∈�

(S(i, j) − μnon)
2 [1 − H(WD(i, j))]

+ η �WD − WSR�2 + (1 − η)
∥∥WD − W�

SR

∥∥2
, (11)

where H(·) is the Heaviside step function

H(z) = 1

2
− 1

π
arctan(

z − ζ

σ
), (12)

as shown in Figure 5 (c).
By minimizing the energy function Eq. (11) [21], we have

μobj =
∑

(i, j )∈� H(WD(i, j)S(i, j))
∑

(i, j )∈� H(WD(i, j))
, (13)

μnon =
∑

(i, j )∈� [1 − H(WD(i, j))]S(i, j)
∑

(i, j )∈� [1 − H(WD(i, j))] . (14)

By computing the gradient

∂WD

∂τ
= δ(WD)[−(S − μobj)

2 + (S − μnon)
2]

− 2[η(WD − WSR) + (1 − η)(WD − W�
SR)], (15)

where δ(·) is the derivative of H(·), τ is the iteration index,
we can iteratively optimize the energy function by the gradient
decent [4] until the maximal number of iterations are reached
or the solution does not change much between two iterations.
The detailed derivation process of Eq. (11) and Eq. (15) can
be found in Appendix.

In practice, we update the correlation filter and the spatial
weight map in every 2 frames which benefits from the robust
learned filter in DSAR-CF. We have analyzed the algorithm
speed in subsection IV-F.

Fig. 7. SRDCF with WSR and WD are used to track the panda respectively.
Tracking results with corresponding response maps are shown for comparison.

F. Saliency-Aware Regularization for Boundary Effects

In this section, we discuss the advantage of multiply-
ing filter F with the our saliency-aware weight map, i.e.
W = WD, compared with the original weight map in SRDCF,
i.e. W = WSR in Eq. (3). We show that spatial regulariza-
tion used by SRDCF actually alleviates boundary effects by
assigning different training samples weights that only rely on
their spatial prior. In our saliency-aware regularization, such
weights consider both the content of target and the spatial prior
and is able to localize target more accurately. As discussed
in [23], correlation filter can be viewed as solving a regression
problem where circular shifted versions of a real sample work
as the training samples. For example, X ∈ R

M×N in Eq. (3) is
a real sample. We can circularly shift it and get M N synthetic
samples. We reformulate the objective function of SRDCF, i.e.
Eq. (3), by setting F� = W � F and get

E�
SR(F�) =

∥∥∥∥X ∗ (
1

W
� F�) − Y

∥∥∥∥
2

+ ∥∥F�∥∥2
, (16)

where the index k in Eq. (3) is ignored for convenient
representation. X ∗ ( 1

W � F) equals to (Adiag( 1
w ))f �, where w

and f � are the vectorized W and F�, respectively. Each row of
A ∈ R

M N×M N is a vectorized training sample, i.e. a circularly
shifted X. Hence, Adiag( 1

w ) is to assign each training sample,
i.e. a row of A, a weight that is determined by W.

In the original CF objective function, i.e. Eq. (2), all the
elements of W have the same value, which means both real
sample and synthetic samples are of equal importance for
learning filter. However, those synthetic samples shifted to be
far from target center cannot represent the real scene. Hence,
it is difficult to learn discriminative filter via CF. SRDCF
generates W = WSR according to the shifting distance of
training samples. That is, a synthetic sample with large shifting
distance will be assigned a small weight. This effectively
removes the influence of useless synthetic samples, thus learns
much more discriminative filter than CF. However, SRDCF
uses a fixed and rectangle-defined weight map, i.e., WSR in
Eq. (4), which ignores the content of target, e.g., shape or
saliency part, and is not suitable for targets with irregular
shapes. In contrast to SRDCF, we online optimize Eq. (7)
to make selection of target and non-target region to generate
dynamic weight map. Hence, the generated weight map, i.e.
WD, can reduce influences of more useless synthetic samples
than WSR and help learn more discriminative filter. We show a
typical example in Figure 7 where SRDCF with WD and WSR
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are used to track a panda respectively. Response maps on six
frames are used to evaluate the discriminative power of the
learned filter. Clearly, the peak of response map generated by
SRDCF with W = WD is more prominent than the one of
WSR, which enables SRDCF with WD to localize target more
accurately.

IV. EXPERIMENTAL RESULTS

In this section, we validate the proposed method by
conducting comprehensive experiments on standard bench-
marks OTB-2013 [44], OTB-2015 [45] and VOT-2016 [27],
and compare its performance with several existing state-of-the-
art trackers. Furthermore, we conduct the analysis experiments
to evaluate the proposed algorithm and the ablation study to
demonstrate the usefulness of each component.

A. Setup

1) Implementation Details: We implement the proposed
method in Matlab and run on a desktop computer with an
Intel Core i7 3.4GHz CPU. We apply HOG [6] for extracting
feature maps in Steps ii) and iv) in CF tracking. Compared
with SRDCF, our method has four new parameters, i.e. dilation
factor κ , control parameter ζ in Eq. (8), σ in Eq. (12) and η
in Eq. (7). We fix these parameters on all benchmark datasets
by setting κ = 1.5, ζ = 3.1 and σ = 0.01. η is computed
by Eq. (10). All other parameters are inherited from SRDCF.
For example, we fix a = 0.1, b = 3.0 in Eq. (4), and K = 4
in Section III-A. We further discuss the influence of the four
new parameters in Section IV-C.1.

2) Datasets and Metrics: The experiments are conducted on
three standard benchmarks: OTB-2013 [44], OTB-2015 [45]
and VOT-2016 [27]. The first two OTB datasets contain 51 and
100 sequences, respectively. For OTB datasets, we use the
one-pass evaluation (OPE) with metrics of center location
error (CLE) and intersection-over-union (IoU). The CLE and
IoU measure distance of predicted locations from the ground
truth and the overlap ratio between predicted and ground truth
bounding boxes, respectively. For each metric, we can set a
threshold to judge if a tracker is successful at each frame
and calculate the percentage of successful frames within each
sequence. We then calculate average success percentages w.r.t.
different thresholds on all sequences and obtain success and
precision plots. After that, the area under curve (AUC) of
each plot can be calculated. The VOT-2016 has 60 sequences
and re-initializes testing trackers when it misses the tar-
get. The expected average overlap (EAO) considering both
bounding box overlap ratio (accuracy) and the re-initialization
times i.e. failures times (robustness) serves as the major
evaluation metrics. The VOT-2016 [27] provides the EAO
with re-initialization as baseline experiments and without
re-initialization as unsupervised experiments, and the overall
integrates both the baseline and unsupervised experiments.

3) Comparison Methods: We compare the proposed
method with 8 state-of-the-art trackers based on hand-crafted
features including KCF [23], DSST [8], SAMF [29],
DLSSVM [32], Staple [1], SRDCF [9], CSRDCF [30] and
BACF [15], and with 8 deep feature based methods including

Fig. 8. Precision plots (left) and success plots (right) of both the proposed and
comparison methods on OTB-2013 (first row) and OTB-2015 (second row).
The legend contains the average distance precision score at 20 pixels and the
AUC of success plot of each method.

DeepSRDCF [10], HCF [31], HDT [34], SiamFC [2],
CFNet1, C-COT [12], DSiam [18] and CREST [38]. Among
them, DLSSVM is an SVM-based tracker. KCF, DSST,
SAMF, SRDCF, Staple, CSRDCF and BACF are correlation
filter (CF) based trackers. Moreover, DeepSRDCF, HCF,
HDT, C-COT are deep feature based CF trackers. SiamFC,
CFNet, and DSiam are Siamese network based trackers.
CREST is a convolutional residual based tracker.

B. Results

1) Evaluation on OTB Benchmark: The first row of
Figure 8 shows comparison results of our methods and eight
hand-crafted feature based trackers on OTB-2013. In terms
of precision score, our DSAR-CF obtains the highest perfor-
mance and a gain of 1.3% over SRDCF. In terms of the AUC
of success plots, DSAR-CF outperforms all the comparison
trackers including recent BACF and CSRDCF and achieves
3.5% improvement over SRDCF. Without online updating
the weight map, SSAR-CF also gets better results than the
other trackers, except for BACF, which demonstrates the effec-
tiveness of using saliency map to learn more discriminative
filter.

We can find similar results on OTB-2015 in the second
row of Figure 8. Specifically, DSAR-CF gets gains of 3.9%
and 4.1% over SRDCF according to the precision score
and success plot AUC. These improvements are higher than
the ones obtained on OTB-2013, since OTB-2015 extends
OTB-2013 with more challenging sequences where SRDCF
easily fails.

We also perform an attribute-based analysis of the proposed
method on OTB-2015. The 100 videos of OTB-2015 are

1The version of CFNet we use is Baseline+CF-conv3 [40].
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TABLE I

ATTRIBUTES BASED SUCCESS RATE AUC SCORES FOR SSAR-CF, DSAR-CF AND OTHER 8 HAND-CRAFTED FEATURE BASED TRACKERS
ON OTB-2015. THE BEST THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE RESPECTIVELY

TABLE II

ATTRIBUTES BASED SUCCESS RATE AUC SCORES FOR SSAR-CF, DSAR-CF AND OTHER 8 DEEP TRACKERS ON OTB-2015.
THE BEST THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE RESPECTIVELY

grouped into 11 subsets according to 11 attributes2. Table I
shows the success plot AUC of 8 comparison methods and the
proposed DSAR-CF and SSAR-CF on 11 subsets. DSAR-CF
outperforms all the comparison trackers on all subsets, which
demonstrates the advantage of DSAR-CF in addressing various
interferences. Particularly, DSAR-CF gets the largest gain, i.e.
5.1%, on subset of scale variation (SV). Although using fixed
weight map, SSAR-CF still gets higher accuracy than SRDCF
on all subsets, which also illustrates the advantage of saliency
map for spatially regularized CF.

In addition to these hand-crafted feature based trackers,
we compare DSAR-CF and SSAR-CF with eight well known
deep trackers. Table II shows the comparison results on
OTB-2013, OTB-2015 and its 11 subsets. On OTB-2013,
the performance of DSAR-CF is slightly worse than C-COT
and CREST while getting a gain of 2.0% over DeepSRDCF
that is an extension of SRDCF by using deep features,
which further demonstrates the effectiveness of introducing
saliency-aware regularization. On OTB-2015, DSAR-CF gets
the second best results and still outperforms DeepSRDCF.
However, the gain over DeepSRDCF is reduced to 0.4%, since
deep features help get better results on challenging sequences
in OTB-2015. Note that, although C-COT and CREST produce

2The 11 attributes are occlusion (OCC), background clutter (BC), illumina-
tion variation (IV), fast motion (FM), deformation (DEF), scale variation (SV),
out-of-plane rotation (OPR), in-plane rotation (IPR), out-of-view (OV), motion
blur (MB), and low resolution (LR).

better tracking than DSAR-CF, they are implemented on GPU
and run at 0.2 FPS and 1 FPS respectively which are much
slower than DSAR-CF running at 6 FPS. Furthermore, C-COT
is an improved SRDCF, which could help improve DSAR-CF
in the future. In terms of results on 11 subsets, DSAR-CF gets
the second best results on subsets of OCC, BV, IV, DEF and
SV and outperforms DeepSRDCF on 7 subsets including BC,
DEF, OCC, LR, IV, OPR, and SV.

2) Evaluation on VOT-2016 Benchmark: Tracking perfor-
mance on VOT-2016 is shown in Table III, where we compare
the proposed DSAR-CF and SSAR-CF with other five methods
that participate in the VOT-2016 challenge, i.e. KCF [23],
SAMF [29], DSST [8], SRDCF [9], and SiamFC3 [2]. We can
see that SSAR-CF outperforms the baseline SRDCF in accu-
racy but with lower robustness – the average number of failures
increases from 1.50 to 1.52. However, the proposed DSAR-CF
improves both the accuracy and robustness of SRDCF and
has significant improvement compared with other comparison
methods. For the expected average overlap (EAO), DSAR-CF
also gets the best performance in supervised (baseline) and
unsupervised experiments: it improves the EAO of SRDCF by
5.9% and 4.3% in terms of baseline and overall respectively.

3) Qualitative Analysis: As shown in Figure 9, Board and
Sylvester are selected to show the robustness of trackers
against object deformation. The target in sequence Board is

3The SiamFC version with AlexNet [2].
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TABLE III

COMPARATIVE RESULTS ON VOT-2016 IN TERMS OF THE AVERAGE ACCURACY (ACCURACY), ACCURACY RANKING (ACC. RANK),
AVERAGE FAILURES (ROBUSTNESS), AND EAO UNDER BASELINE, UNSUPERVISED AND OVERALL EXPERIMENTS, RESPECTIVELY

Fig. 9. Tracking results on Box, Girl2 and Board, Sylvester videos (with deformation or occlusions) in OTB-2015.

TABLE IV

COMPARATIVE STUDY OF DIFFERENT κ , σ AND η ON OTB-2015 VIA THE PRECISION SCORE (%) AT 20 PIXELS AND SUCCESS RATES (%) AUC SCORE

a rigid body, but has significant appearance variations as it
moves and turns (e.g. #572, #587), most trackers can not track
it except for CSRDCF and DSAR-CF. Figure 9 (bottom) shows
the tracking results on two representative sequences Box and
Girl2 where the target shows severe or long-term occlusion.
In the Box sequence, the box can be tracked well until it is
occluded by the vernier caliper in a long term (e.g. #458).
Only three trackers, i.e. SAMF, CFNet and DSAR-CF, can
track it continuously after leaving the obstruction (e.g. #492).
In the Girl2 sequence, the girl is occluded by a man severely
(e.g. #104) and only the proposed method can track the
target successfully (e.g. #131) when the man goes away.
Experimental results confirm the strength of the proposed
method in tracking the target occluded by other objects. This is
due to that DSAR-CF dynamically updates the spatial weight
map with the response map by considering the credibility of
foreground object and avoiding the disturbance of target losing
such as occlusion effectively. Analogously, in the sequence
Sylvester, a doll moves quickly with rotation and despite
heavy deformation in some frames (e.g. #676, #1078, #1123),

the proposed method can track the doll well, while most other
methods falsely estimate the scale or even lose the target
(e.g. #1171). This is due to that the proposed DSAR-CF
considers the saliency information in the process of updating
the spatial weight map and incorporates more object shape
information to improve the robustness in the case of object
deformation.

C. Analysis of the Proposed Method

1) Parameter Selection: We investigate the performance
changes w.r.t. different setups of the four parameters, i.e.
dilation factor κ , control parameter ζ in Eq. (8), σ in Eq. (12)
and η in Eq. (7). Specifically, for κ that determines the
region size for saliency detection, we compare three variants,
i.e. κ = 1, 1.5, 2, on OTB-2015 dataset by fixing all other
parameters. As shown in Table IV, neither a smaller or larger κ
can get better tracking accuracy than κ = 1.5. A larger κ
results in a larger region containing more background for
saliency detection and easily produces a poor saliency result



FENG et al.: DYNAMIC SALIENCY-AWARE REGULARIZATION FOR CF-BASED OBJECT TRACKING 3241

TABLE V

COMPARATIVE STUDY OF DIFFERENT τ1, τ2 ON OTB-2015 VIA PRECISION
SCORE (%) AT 20 PIXELS AND SUCCESS RATES (%) AUC SCORE

that affects the online learning of filter. Meanwhile, since
a target usually fills the whole bounding box, a smaller κ ,
e.g. 1, usually misses the main boundary of target, thus making
limited contribution to the regularization term. Although show-
ing different performance, all three variants improve SRDCF,
which validates the effectiveness of introducing saliency into
regularization term. ζ is used in Eq. (8) to separate the
target from the background according to WD. We get three
variants by setting ζ = WSR(b1), WSR(a1) and WSR(c1)
where b1, a1 and c1 are three points on WSR as shown
in Figure 5 (b). We evaluate these variants on OTB-2015 and
report the results in Table IV. ζ = WSR(b1) outperforms the
other two variants, i.e. WSR(a1) and WSR(c1), with 3.1% and
4.8% relative improvement, respectively. We also show the
influence of parameter σ in Eq. (12) that controls the shape
of H(z) and δ(z) as shown in Figure 5 (c) and (d). We set
σ = 0.01 as the baseline and enlarge/reduce σ five times
respectively. As shown in Table IV, the tracking accuracy
changes little with the huge displacement of σ . Hence, our
method is not very sensitive to σ . η in Eq. (10) works
as a weight for two terms in Eq. (7) and is determined
by two hyperparameters, i.e. τ1, τ2. Table V compares the
tracking results on OTB-2015 with different setups of τ1, τ2.
Clearly, the tracking accuracy changes little with different τ1
and τ2. In practice, we set τ1 = 0.3, τ2 = 0.4 for the best
performance.

2) Saliency Method Selection: We evaluate the effect of dif-
ferent saliency detection methods on tracking performance and
show that our DSAR-CF is not very sensitive to the selection
of saliency detection method. We first compare the saliency
detection results of four popular methods i.e. SCA [35],
wCtr [51], GS [43] and RA [36], on three saliency detection
datasets and two cases from OTB. As shown in Figure 10
and Table VI, there are quite large differences between the
performance of four saliency detectors. Meanwhile, the per-
formance of a method varies on different datasets. Particularly,
SCA gets the best performances on MSRA-5000 and ECSSD
while performs worse on PASCAL-S. However, when we
equip these methods to DSAR-CF and evaluate the tracking
performance on OTB-2015, we find that the four methods lead
to similar tracking performance, which are higher than that of
the baseline tracker, i.e. SRDCF, as shown in Table VI. Hence,
our tracking framework is partly but not highly dependent on
the choice of the saliency detection method. In practice, our
final version DSAR-CF uses SCA as the saliency detector for
its highest performance on OTB-2015.

Fig. 10. Saliency results generated by four saliency detection methods (SCA,
wCtr, GS, RA) on two sample sequences.

D. Ablation Study

To validate the effectiveness of our method, we com-
pare four variants of our method with two baseline track-
ers, as shown in Table VII. Specifically, SRDCF-WSR and
SRDCF-S are the two baseline trackers that uses WSR and S
as the weight map, respectively. SSAR-CF use WS in Eq. (6)
as weight map. DSAR-CF_mask replaces the saliency map
with a target adaptive mask that is online generated by solving
the energy function of [30]. DSAR-CF_w/oR uses Eq. (7)
to update the weight map while ignoring the influence of
response map by fixing η = 1. DSAR-CF is the final version
of our method.

As shown in Table VII, SSAR-CF gets 2.2% relative
improvement over SRDCF, i.e. SRDCF-WSR, according to the
success plot AUC on OTB-2015. More importantly, SSAR-CF
outperforms SRDCF on all 11 subsets of OTB-2015. Hence,
SSAR-CF does help SRDCF with lower sensitivity to various
interferences by introducing the saliency maps of targets into
the spatial weight map for effective regularization. However,
those improvements are not that remarkable except for the one
obtained on the subset of out-of-view (OV), since SSAR-CF
uses fixed weight map, i.e. WS, during tracking and does not
consider the target variation. When we use Eq. (7) to update
the weight map via online updated saliency map, DSAR-
CF_w/oR gets much higher performance gain over SRDCF
than SSAR-CF. By further introducing guidance of response
maps via dynamically calculated η, our final version of
DSAR-CF achieves 6.9% relative improvement over SRDCF.

We also compare SSAR-CF with SRDCF-WSR and
SRDCF-S to validate the effectiveness of the saliency-aware
regularization. As presented in Table VII, by setting S
as weight map directly, SRDCF-S gets much lower accu-
racy than SRDCF-WSR and almost fails on most of the
sequences. However, SSAR-CF using WS that combines
WSR and S outperforms SRDCF-WSR with 2.2% relative
improvement according to success plot AUC on OTB-2015,
which demonstrates the advantage of adding saliency map
into WSR.

An alternative way of realizing online updated regular-
ization is to generate WD by replacing the saliency map
with a target adaptive mask that is online generated by
solving the energy function in [30]. We denote such vari-
ant as DSAR-CF_mask. As shown in Table VII, by online
updating the weight map with the target adaptive mask,
DSAR-CF_mask gets higher performance than SSAR-CF
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TABLE VI

TOP: EVALUATION RESULTS OF FOUR SALIENCY DETECTORS ON THREE
STANDARD SALIENCY DETECTION DATASETS (MSRA-5000, ECSSD

AND PASCAL-S), WHERE THE MEAN ABSOLUTE ERROR (MAE)
IS TAKEN AS EVALUATION METRIC. BOTTOM: TRACKING

PERFORMANCE OF DSAR-CF WHEN USING THE FOUR
SALIENCY DETECTION METHODS RESPECTIVELY

on OTB-2013. However, DSAR-CF_mask is worse than
SSAR-CF on OTB-2015 and the subsets of IV, DEF, OV and
MB, since the target adaptive masks from [30] usually miss the
main boundary of target and leads to less discriminative filter.
In contrast to DSAR-CF_mask, our DSAR-CF online updates
the weight map with saliency maps and can outperform
SSAR-CF on all the subsets, which demonstrates that updating
regularization via saliency maps is more effective than that via
target adaptive masks for online learning discriminative filter.

In terms of saliency detection, we find that DSAR-CF
outperforms DSAR-CF_w/oAB, which does not abandon the
saliency result outside the target region, on all subsets and
achieves 5.0% relative improvement on the OTB-2015. Hence,
abandoning the saliency results of background does help
DSAR-CF learn more discriminative filter and track the target
more accurately. This is reasonable since the saliency val-
ues (< 1) in background would reduce the penalties of WSR
on background when we use Eq. (6) to reweight WSR, thus
making the learned filter more sensitive to background clutters.

Figure 11 compares DSAR-CF with SRDCF on three typical
sequences whose targets are located in background clutter,
deformation and occlusion, respectively. In ‘Soccer’, although
the man is surrounded by other players with similar appear-
ances, DSAR-CF still gets reliable saliency maps that capture
the main boundary of the target during tracking and achieves
higher accuracy than SRDCF. In ‘Human5’, the woman walks
from far to near, which results in large scale variation and
deformation. DSAR-CF also gets saliency maps containing
the main parts of target and estimates the scale variation
more accurately than SRDCF. Particularly, at frame #710,
the woman is partially occluded by a wall. The saliency map
successfully captures such changes and helps DSAR-CF keep
tracking the target. SRDCF however fails. Such situation can
be also found in ‘Lemming’. All of the three cases show that
DSAR-CF can generate meaningful saliency maps even the
target is under background clutter, deformation and occlu-
sion. Meanwhile, the introduction of saliency map does help
improve the tracking accuracy by estimating scale variation
more accurately and overcoming the partial occlusion.

E. Failure Cases

We have shown that saliency map does help improve the
tracking accuracy of spatially regularized correlation filter in

Fig. 11. Comparing SRDCF with DSAR-CF on three challenging sequences
with background clutter, deformation and occlusion. The cropped search
regions and corresponding saliency results are shown below each frame.

Fig. 12. Three failure cases of DSAR-CF shown in three rows respectively.
The cropped search region and corresponding saliency results are also shown.
White arrows are ground truth of target location.

Section IV-D. However, saliency map becomes less effec-
tive when target moves very fast. Specifically, as shown in
Figure 12, when a target, e.g. the high jumper in the top
row, moves fast, background around target may be totally
different between neighbor frames. As a result, the saliency
part in t − 1 is no longer salient in t due to the significant
change of surroundings, which makes the updated filter in
t − 1 less effective when detecting the target at t . We can
find similar results on other two cases, i.e. ‘Matrix’ and
‘Dragonbaby’ in rows 2 and 3 of Figure 12. Particularly,
in ‘Matrix’, the target is under multiple interferences, e.g. low
resolution and background clutter, which leads to the target
missing in the saliency map. In ‘Dragonbaby’, the baby’s face
suddenly disappears while his arm becomes salient, which
leads to target missing in the saliency map. Note that, although
saliency map has such disadvantage, our method, i.e. DSAR-
CF, still outperforms SRDCF on the subset of fast motion in
OTB-2015, as shown in Table I. There are two reasons. First,
we use a saliency map to modify the original spatial weight
map, i.e. WSR, and get WS (Please refer to Section III-C
for details). Hence, WS still keeps main information of WSR
which helps avoid severe accuracy decrease when the saliency
map is not correct. Second, the above sudden motion does not
happen frequently in a sequence, which means that introducing
saliency map could help improve tracking accuracy for most of
the time. As shown in Table I, DSAR-CF outperforms baseline
tracker SRDCF on all 11 subsets of OTB-2015.
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TABLE VII

ABLATION STUDY BY COMPARING FIVE VARIANTS OF OUR METHOD WITH BASELINE TRACKER, SRDCF THAT IS RE-DENOTED AS SRDCF-WSR
HERE. SRDCF-WSR, SRDCF-S, SSAR-CF AND DSAR-CF SET WSR , S, WS AND WD AS WEIGHT MAP RESPECTIVELY. DSAR-CF_mask

UPDATES WD USING THE TARGET SIZE ADAPTIVE MASK. DSAR-CF_W/OR ONLINE GETS BY FIXING η = 1 IN EQ. (7), WHICH IGNORES

THE INFLUENCE OF RESPONSE MAP. DSAR-CF_W/OAB GETS THE SALIENCY RESULT S� WITHOUT ABANDONING

THE SALIENCY RESULTS OUTSIDE THE TARGET REGION

TABLE VIII

TIME COST OF DSAR-CF AND ITS DIFFERENT
COMPONENTS ON OTB-2015

F. Speed Analysis

In this section, we first discuss the time consumption of
different components of DSAR-CF. Note that, in SSAR-CF,
we only compute the saliency map at the first frame, which
has no effect on tracking speed of SRDCF. For DSAR-CF,
we evaluate the average time cost of it and its different com-
ponents on OTB-2015 in Table VIII. Specifically, we compute
the average time cost and time proportion of every component
on one frame. ‘Detection’, ‘Updating’ and ‘Saliency’ denote
the stages of detection, filter and weight map updating, and
saliency detection during tracking, respectively.

Algorithm speed is also important in many tracking prob-
lems. Table IX compares several related and well-known CF
trackers, where the FPS is measured on a desktop computer
with an Intel Core i7 3.4GHz CPU. We can see that the
proposed DSAR-CF can improve the baseline SRDCF in terms
of both success rate and algorithm speed.

We can further speed up our tracker in practice. Specif-
ically, since the saliency map does not change frequently,
we can update the saliency-aware weight map after multiple
frames, e.g., in every 10 frames. We denote such variant
as DSAR-CF_upW/10. As shown in Table IX, although the
accuracy decreases slightly, DSAR-CF_upW/10 improves the
tracking speed from 6 FPS to 9 FPS while still showing
much higher performance than SRDCF. To further improve
the tracking speed, we can update the filter in every 5 frames
i.e. DSAR-CF_upF/5, which runs near real time at an average
of 16 FPS. Currently, our method is implemented on the
Matlab platform without any optimization strategies and can be
implemented for real time applications by further optimizing
the code with GPU acceleration or parallel computing.

TABLE IX

THE TRACKING PERFORMANCE AND SPEED OF DSAR-CF
USING DIFFERENT UPDATE FREQUENCY

V. CONCLUSION

In this paper, we extended the CF tracking and the spa-
tially regularized CF tracking to incorporate target saliency
and make the regularization weight map dynamically vary
frame by frame to better capture the shape variation of
the target. We developed a level-set algorithm to iteratively
compute the optimal regularization weight map in each frame.
Experimental results on several standard benchmarks verified
the effectiveness of the proposed method over many exist-
ing state-of-the-art tracking methods. Ablation study verified
the usefulness of important components of the proposed
method. For future work, we plan to improve the optimization
method by replacing the traditional gradient descent with the
network-based method, with the aim of further improving the
speed while maintaining the tracking accuracy. We can further
improve DSAR by using structure information from shape
matching [14] and object segmentation [13], [28].

APPENDIX

In the following appendix, we show the detailed steps to
transform Eq. (7) into Eq. (11) and optimize Eq. (7) w.r.t.
WD. Note that, the optimization method is inspired by the
active contour model [4], [21]. The first two terms of Eq. (7)
are defined on two different regions, i.e. �obj and �non. Thus,
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Eq. (7) cannot be directly optimized. We modify Eq. (7) to

E(WD, μobj, μnon)

=
∑

(i, j )∈�

(S(i, j) − μobj)
2Hp(WD(i, j))

+
∑

(i, j )∈�

(S(i, j) − μnon)
2 [

1 − Hp(WD(i, j))
]

+ η �WD − WSR�2 + (1 − η)
∥∥WD − W�

SR

∥∥2
, (17)

where Hp(·) is a piecewise Heavisible function

Hp(z) =
{

1 z ≤ ζ

0 z > ζ,
(18)

with z = WD(i, j). (S(i, j) − μobj)
2Hp(WD(i, j)) is only

valid when (i, j) ∈ �obj. Similarly, (S(i, j) − μnon)
2(1 −

Hp(WD(i, j))) has meaningful value if and only if (i, j) ∈
�non. However, Eq. (18) is not derivable. We cannot use the
gradient descent to optimize Eq. (17) directly. We thus adopt
an approximated Heaviside function

H(z) = 1

2
− 1

π
arctan(

z − ζ

σ
), (19)

where σ controls the similarity to Hp. By replacing Hp with H,
we get Eq. (11). The derivative of H(·) is

δ(z) = ∂ H (z)

∂z
= − 1

π
· σ

σ 2 + (z − ζ )2 . (20)

We show H(·) with σ = 0.002, 0.01, 0.05 and their derivative
functions in Figure 5 (c) and (d). With H(·) and δ(·), we opti-
mize Eq. (11) via gradient descent and calculate derivative of
E w.r.t. WD by

∂E

∂WD
= δ(WD)[(S − μobj)

2 − (S − μnon)
2]

+ 2[η(WD − WSR) + (1 − η)(WD − W�
SR)]. (21)

We denote τ as iteration index and update WD along the
negative direction of the gradient, i.e.

Wτ+1
D = Wτ

D + 

∂Wτ

D

∂τ
, (22)

where 
 is learning rate and

∂Wτ
D

∂τ
= − ∂E

∂Wτ
D

= δ(Wτ
D)[−(S − μobj)

2 + (S − μnon)
2]

− 2[η(Wτ
D − WSR) + (1 − η)(Wτ

D − W�
SR)]. (23)
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