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Abstract

The global trajectories of targets on ground can be well cap-
tured from a top view in a high altitude, e.g., by a drone-
mounted camera, while their local detailed appearances can
be better recorded from horizontal views, e.g., by a helmet
camera worn by a person. This paper studies a new problem
of multiple human tracking from a pair of top- and horizontal-
view videos taken at the same time. Our goal is to track the
humans in both views and identify the same person across
the two complementary views frame by frame, which is very
challenging due to very large field of view difference. In this
paper, we model the data similarity in each view using ap-
pearance and motion reasoning and across views using ap-
pearance and spatial reasoning. Combing them, we formulate
the proposed multiple human tracking as a joint optimization
problem, which can be solved by constrained integer pro-
gramming. We collect a new dataset consisting of top- and
horizontal-view video pairs for performance evaluation and
the experimental results show the effectiveness of the pro-
posed method.

1 Introduction

Multiple object tracking especially human tracking is one of
the most crucial problems in AI and vision (Luo et al. 2015;
Wen et al. 2019), with many applications such as video
surveillance and environmental monitoring. Although many
advanced tracking algorithms are proposed and break the
performance records on public benchmarks in every year,
there are still many challenges e.g., occlusions and out-of-
view problems, which are far from being well addressed in
tracking (Han, Guo, and Feng 2018; Feng et al. 2019).

While tracking has many applications (Guo et al. 2020),
typically two pieces of information can be provided by
tracking results: accurate trajectories and appearances of
the targets over time. This clearly introduces a conflict –
if the camera is too close to the targets, limited coverage
and frequent mutual occlusions prevent the accurate detec-
tion of their trajectories; if the camera is too far away from
the targets, it is difficult to capture the detailed appearance
of targets that are important for many applications such as
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Figure 1: An illustration of the top-view (a) and horizontal-
view (b) videos. The former is taken by a camera mounted
to a drone in the air and the latter is taken by a GoPro
worn by a wearer who walked on the ground. The proposed
method jointly tracking multiple subjects, indicated by iden-
tical color boxes, across the two videos. Note that the global
motion trajectory and local appearance are well presented in
these two complementary views.

person identification, action recognition, etc. In this paper,
we present a new camera setting to address this problem.
To track a group of people, which we refer to as subjects in
this paper, on the ground, we use two cameras with differ-
ent views and synchronized clock: A top-view camera at a
high altitude, e.g, mounted to flying drone, provides a global
birds-eye view of the subjects and the whole scene as shown
in Fig. 1(a). A horizontal-view camera on the ground, e.g.,
mounted to a helmet worn by one person, which is static or
moves/rotates smoothly without drastic visual field changes,
captures the detailed appearances of subjects of interest, as
shown in Fig. 1(b). We expect the collaborative tracking on
these two complementary views produces both global mo-
tion trajectories and local appearance details of the subjects.

In this paper, we tackle this collaborative tracking by
tracking multiple subjects on each view, together with iden-
tifying the same persons across the two complementary
views frame by frame, as shown in Fig 1. For this we basi-
cally need to accurately associate subjects between the two
views at any time and between different frames along each
video. Prior works (Xu et al. 2016; 2017) on multi-view ob-
ject tracking usually assume the multiple horizontal views
from different angles, e.g., frontal, side and back views and
appearance consistency can still be applied for associating
subjects. Differently, in this paper we adopt a top view from
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a high altitude where view direction is largely perpendicular
to the ground, as shown in Fig. 1(a), to capture the subjects’
global trajectories. This leads to completely inconsistent ap-
pearance and motion features between the two complemen-
tary views: on the top view, each subject is largely a small
dark region with only the head top and two shoulders visible.

We propose a new joint optimization model to address
the proposed collaborative tracking problem. Specifically,
we split the video in each view into short clips with equal
length and extract the tracklets in each clip, which we refer
to as single-view tracklets. The tracklets from adjacent clips
in both two views are then used for establishing the spatial-
temporal data association, resulting in the cross-view short
trajectories. We formulate the multi-clip cross-view data as-
sociation as a joint optimization model and solve it by a con-
strained integer programming algorithm. In this model, the
single-view data similarity on each video is based on sub-
jects’ appearance and motion consistency while the cross-
view data similarity is built by the spatial and appearance
reasoning. We finally stitch the short trajectories over time
to get the cross-view long trajectories as the final tracking
results. In the experiments, we collect a new dataset for per-
formance evaluation and the experimental results verify the
effectiveness of the proposed method.

The main contributions of this paper are: 1) This is the
first work to address the multiple human tracking by com-
bining the complementary top and horizontal views, which
can simultaneously capture the global trajectories and local
detailed appearances of the subjects. 2) We build a new joint
optimization model to associate the subjects across views as
well as over time and solve it by constrained integer pro-
gramming. 3) We collect a new dataset of top-view and
horizontal-view videos for performance evaluation1.

2 Related Work

Multiple object tracking. In general, multiple object track-
ing (MOT) can be divided into offline tracking and online
tracking. The former takes MOT as an optimization prob-
lem of global data association (Tang et al. 2016; 2017;
Wang et al. 2016) and is limited to offline applications. The
latter only uses the information on the current frame and pre-
vious frames (Xiang, Alahi, and Savarese 2015; Zhu et al.
2018), which is suitable for real-time applications but may
not handle well long-term occlusions or mis-detections. Dif-
ferent features are used for data association in MOT. Most
widely used are appearance and motion features. Color his-
togram is a popular feature representation for appearance in
MOT (Dehghan, Assari, and Shah 2015; Tang et al. 2016).
Recently, deeply learned appearance features are also used
in tracking (Lealtaixe, Cantonferrer, and Schindler 2016;
Chu et al. 2017; Zhu et al. 2018). Both linear and non-
linear models have been used for representing motion fea-
tures in MOT. While linear motion models assume a linear
movement with constant velocity across frames (Zamir, De-
hghan, and Shah 2012; Dehghan, Assari, and Shah 2015;
Ristani and Tomasi 2018), nonlinear motion models may
lead to more accurate predictions (Yang and Nevatia 2012a;

1https://github.com/HanRuize/CVMHT

2012b). However, in this paper the consistency of either ap-
pearance or motion features are poor across the top and hor-
izontal views.

Multi-view multi-object tracking. Also related to our
work is the previous research on multi-view MOT. Some
of them focus on excavating more information from mul-
tiple views for tracking, such as geometrical relations based
tracking methods (Ayazoglu et al. 2011) and reconstruction-
assistant trackers (Hofmann, Wolf, and Rigoll 2013). Many
others focus on new problem formulations and solutions. For
example, Fleuret et al. (2008) propose a generative model
with dynamic programming for tracking. Liu (2016) pro-
poses a multi-view method for tracking people in crowded
3D scene. More recently, Xu et al. (2016; 2017) integrate
more semantic attributes, e.g., human postures and actions
besides appearance and motion features, for cross-view ob-
ject tracking. However, multi-views in these methods are ac-
tually all horizontal views, but with different view angles.
This way, most of these multi-view MOTs still use appear-
ance and motion matching to infer the cross-view data asso-
ciation. As mentioned above, this paper aims to track and
associate subjects across top and horizontal views, where
cross-view appearance and motion consistency are poor.

Top view and horizontal view. Top view and horizontal
view are two complementary views and the conjoint analy-
sis of them have drawn much attention recently. Ardeshir
and Borji (2016; 2018a) propose a method to identify
camera wearers on a top-view video given the horizontal-
view videos recorded by these wearable cameras. Similarly,
given a horizontal video and a top-view video, Ardeshir
and Borji (2018b) study how to identify the horizontal-
view camera holder in the top-view video, and re-identify
the subjects present in both the horizontal- and top-view
videos. Han et al. (2019) exploit the spatial distribution of
the subjects to match all the subjects between the top- and
horizontal-views, and builds the subject association across
the two views. To the best of our knowledge, this paper is
the first to track multiple subjects across the top and hori-
zontal views by considering subject association both across
views and over time.

3 The Proposed Method

3.1 Overview

Given a pair of temporally-aligned videos that are taken
from the top view and horizontal view, respectively, we first
synchronously split these two videos into short clips with
the same length, e.g., 10 frames. In each video clip, we ex-
tract a set of subject tracklets using a simple overlap criteria:
detected subjects (in the form of bounding boxes) with good
overlap, e.g., higher than 50%, between two adjacent frames,
are connected to form tracklets. We discard the tracklets that
are overly short, e.g., traversing less than 3 frames. We refer
to the resulting tracklets as single-view tracklets since they
are extracted from the top-view and horizontal-view videos,
respectively. We then conduct cross-view cross-clip data as-
sociation for these single-view tracklets. More specifically,
as shown in Fig. 2, the single-view tracklets from two ad-
jacent clips in two views are fed into corresponding cluster
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Figure 2: An illustration of subject association between con-
secutive clips and across two views. Solid triangle in each
cluster represent its dummy node.

as nodes. We then establish the subject association between
clips and across views by using a joint optimization func-
tion. We refer to the generated tracking trajectories between
two clips and across two views as cross-view short trajecto-
ries. Finally, we stitch the short trajectories by considering
the frame overlap over time and obtain the cross-view long
trajectories as the final tracking results.

3.2 Problem Formulation

The single-view tracklets from two adjacent clips in two
views constitute four clusters 0, 1, 2, and 3, as shown in
Fig 2. Each (real) node in a cluster represents a single-view
tracklet in respective clip/view. We define e i

mn as the binary
variable for the edge between the node m in cluster i and the
node n in cluster (i+ 1)|4, where | is the modulo operation.
For the four clusters shown in Fig 2, cluster (i + 1)|4 is ad-
jacent to cluster i in a clockwise order. This way, edge con-
nection is only considered between tracklets from the same
view or from the same clip. Besides, the edge connection
is intended to be unidirectional and we define c i

mn as the
weight of edge e i

mn. Edge weight reflects the similarity of
two tracklets over time or across views and we will elabo-
rate on its constructions later.

The energy function of the problem can be formulated as

argmax
e,d

3∑
i=0

(

Ni′∑
n=1

Ni∑
m=1

c i
mn · e i

mn + c0 · di), (1)

where Ni denotes the number of real nodes (tracklets) in
cluster i, and i′ = (i + 1)|4. Other than real nodes, we also
add a dummy node (Dehghan, Assari, and Shah 2015) for
each cluster, which can be connected to multiple nodes (both
real and dummy node) in other clusters2. The variable di

counts the number of edges connected to the dummy node
in cluster i, which can take any nonnegative integer value.

This is an mixed integer programming (MIP) problem and
we further consider three constraints:

2We add dummy nodes to handle the cases of misdetection,
occlusion and out of view. For example, a match between a real
node in cluster 1 and the dummy node in cluster 2 indicates that
the tracked subject underlying the real node in cluster 1 is not de-
tected/tracked in cluster 2.

Constraint 1 limits that there is at most one edge between
1) nodes in cluster i and a (real) node in cluster i′, 2) a (real)
node in cluster i and nodes in cluster i′, i′ = (i+ 1)|4:

Ni∑
m=1

e i
mn ≤ 1,

Ni′∑
n=1

e i
mn ≤ 1. (2)

Constraint 2 ensures that resulting edge connections form
loops among four clusters:

e i
mn + e i′

np + e i′′
pq ≤ 2 + e i′′′

qm , (3)

where i′ = (i+ 1)|4, i′′ = (i′ + 1)|4, and i′′′ = (i′′ + 1)|4.
Constraint 3 ensures that a same number of K nodes (in-
cluding the number of real nodes and the value of dummy
node) are selected for association from each cluster:

Ni′′′∑
q=1

Ni∑
m=1

e i′′′
qm +

Ni∑
m=1

Ni′∑
n=1

e i
mn + di = 2K. (4)

With above three constraints, we solve the integer pro-
gramming to obtain edge sets between different clusters,
which provide the desired subject association across two
views and two clips. Next we define the edge weights, i.e.,
the similarity between tracklets.

3.3 Cross-View Data Association

Spatial reasoning. For a pair of synchronized clips from
the top view and horizontal view, respectively, we first use a
spatial distribution based method (Han et al. 2019) to get the
association results of the subjects frame by frame. Specif-
ically, let T = {Tm}Mm=1 be the collection of M subjects
detected on a frame in one view, and H = {Hq}Qq=1 be
the collection of Q subjects detected on the correspond-
ing frame in the other view. The result of cross-view sub-
ject association is to identify all the matched subjects be-
tween T and H. The association results can be expressed as
A(Tm, Hq) = 1 if Tm, Hq represent the same person, while
A(Tm, Hq) = 0 otherwise. Given two single-view track-
lets Tm,Hq extracted from synchronized clips in two views
clips, respectively, we identify their temporally overlapped
L frames, on each of which we have subjects T l

m and H l
q ,

l = 1, · · · , L. The similarity between Tm,Hq can be calcu-
lated by

ĉiqm =

∑L
l=1 A(T l

m, H l
q)

max(|Tm|, |Hq|)
, i = 1, 3 (5)

where |Tm| denotes the length of the tracklet Tm (number
of contained subjects) and i = 1, 3 indicate the two sets of
edges in Fig. 2 that reflect cross-view data association.

Appearance reasoning. In addition to the spatial reason-
ing, we also consider the appearance similarity. In consider-
ation of the difficulty of data annotation and algorithm effi-
ciency, we design a one-short learning based Siamese net-
work (Koch, Zemel, and Salakhutdinov 2015) to measure
the similarity between two tracklets. The detailed Siamese
network structure is shown in Fig. 3. Given two tracklets,
each of which consisting of a sequence of image patches, we
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first compute the mean image of these patches in each track-
let. As shown in Fig. 3, the mean images of two tracklet are
fed into the Siamese network, which is composed of three
convolution layers and two connection layers, and uses the
pair-based contrastive loss function (Hadsell, Chopra, and
Lecun 2006). By calculating the Euclidean distance of the
two streams’ output vectors, we obtain the similarity score
ciqm of the two tracklets Tm,Hq for i = 1, 3.

Figure 3: Siamese neural network structure for measuring
the cross-view appearance similarity.

3.4 Cross-Clip Data Association

Appearance consistency. To measure the appearance simi-
larity of single-view subjects, we use color histogram as the
representation. We first compute the histogram for all the
subjects of a single-view tracklet. Then the median of all
the histogram is selected as the appearance descriptor of the
tracklet (Dehghan, Assari, and Shah 2015). Let ϕ(Tm) and
ϕ(Tn) be the appearance descriptor of the tracklets Tm and
Tn respectively. We use Histogram Intersection (Grauman
2005) to calculate the appearance similarity between them:

ĉimn = K(ϕ(Tm), ϕ(Tn)), i = 0, 2 (6)
where K denotes a kernel function (Grauman 2005) and i =
0, 2 indicate the two sets of edges in Fig. 2 that reflect cross-
clip data association.

Motion consistency. We also consider the motion consis-
tency for single-view subject association. We use the con-
stant velocity motion model to predict motion consistency as
in most previous MOT tracking methods. Given two track-
lets, the forward and backward deviation error δf and δb
can be computed by the motion model. The deviation error
δ = α(δf +δb) is to measure the difference of the two track-
lets Tm and Tn, where α is a scaling factor. We convert the
errors into similarity by cimn = e−δ , which takes the value
in [0, 1] for i = 0, 2.

3.5 Tracking Framework

Given two cross-view tracklets Tm,Hq , we can use the
above methods to get the spatial similarity score ĉiqm and
appearance similarity score ciqm, respectively (i = 1, 3). We
use the linear combination to compute the final edge weight
ciqm as

ciqm = w1ĉ
i
qm + (1− w1)c

i
qm, i = 1, 3 (7)

where w1 is a pre-set parameter. Similarly, given two single-
view tracklets Tm,Tn from different clips, we calculate the
edge weight cimn (i = 0, 2) by

cimn = w2ĉ
i
mn + (1− w2)c

i
mn, i = 0, 2 (8)

where w2 is a pre-set parameter, and ĉimn, cimn are the track-
let similarity scores calculated by the appearance color his-
togram feature and motion model, respectively.

The proposed MOT tracking method can be summarized
in Algorithm 1.

Algorithm 1: Complementary-View MOT:
Input: VT , VH : Top-view and horizontal-view videos;

parameters w1, w2, c0.
Output: Tracked subject bounding boxes with ID

numbers.
1 Split the cross-view videos into T clips respectively.
2 for t = 1 : T do
3 Detect the subjects then extract the single-view

tracklets Tt
m ,Ht

q , Tt+1
n , Ht+1

p in clip t and t+ 1.
4 Calculte the tracklets similarity scores then

compute the edge weight c by Eq. (7) and Eq. (8).
5 Solve e by Eq. (1) to get cross-view

short-trajectories.
6 if t = 1 then
7 if eqm = 1 then
8 Assign the same ID numbers to the

bounding boxes in the tracklets Tt
m,Ht

q .

9 else
10 Assign the incremental ID to the other ones.

11 else
12 if emn = 1 (epq = 1) then

13 Assign the ID number of Tt
m (Ht

q) to
Tt+1

n (Ht+1
p ), respectively.

14 else if enp = 1 then

15 Assign the ID number of Tt+1
n to Ht+1

p .

16 else
17 Assign the incremental ID to the other ones.

18 return bounding boxes with ID numbers

4 Experiments

4.1 Dataset and Metrics

We do not find publicly available dataset with temporally
synchronizing top-view and horizontal-view videos with
ground-truth labeling for cross-view multiple object track-
ing. Therefore, we collect a new dataset by flying a drone
with a camera to take top-view videos and mounting GoPro
over the head of a person to take the horizontal-view videos
for performance evaluation. Videos are taken at five sites
with different background. The subjects are free to move or
stop in the scene without any specific instructions and there
may be random mutual occlusions between subjects. We
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Table 1: Comparative results of different methods. IDP, IDR, IDF1, IDS, MOTP, MOTA are standard MOT metrics. CVIDF1

and CVMA are the new metrics for evaluating the cross-view MOT.
Method IDP IDR IDF1 IDS MOTP MOTA CVIDF1 CVMA
GMMCP 49.4 50.7 50.1 1172 75.2 79.3 17.9 27.2
MDP 65.8 68.4 67.1 723 75.2 84.9 33.7 38.1
DMAN 72.3 77.2 74.7 311 75.1 82.4 44.7 43.2
Ours 77.6 76.6 77.1 382 74.9 84.2 84.0 78.3

Table 2: Comparative results of different methods on the subsets of top-view videos and horizontal-view videos, respectively.

Method Top view Horizontal view
IDP IDR IDF1 IDS MOTP MOTA IDP IDR IDF1 IDS MOTP MOTA

GMMCP 50.7 50.7 50.7 822 69.3 76.5 47.7 50.8 49.2 350 83.6 83.4
MDP 76.2 77.8 77.0 331 69.6 86.3 50.8 54.3 52.5 392 83.6 82.7
DMAN 85.1 87.4 86.2 65 70.0 85.8 54.8 61.9 58.1 246 82.7 77.4
Ours 79.5 80.9 80.2 115 69.2 84.0 74.3 70.1 72.2 267 83.8 84.5

manually synchronize these videos such that corresponding
frames between them are taken at the same time. We then
cut out 15 pairs of sequences with length from 600 to 1,200
frames as our dataset. We manually annotate the subjects in
the forms of rectangular bounding boxes and ID numbers:
the same subject across two views are labeled with the same
ID number.

We apply standard MOT metrics for evaluating the track-
ing performance (Lealtaixé et al. 2015), including multi-
object tracking precision (MOTP) and multi-object tracking
accuracy (MOTA). One key task of the proposed collabo-
rative MOT is to identify/track the same subject across two
views. Therefore, we also select four ID-based metrics, i.e.,
ID precision (IDP), ID recall (IDR), ID F1 measure (IDF1)
and ID switches (IDS) for performance evaluation.

Besides, to fully measure the performance of the proposed
cross-view multiple object tracking, we define the following
new metrics. First, the cross-view ID F1 metric – CVIDF1 is
defined as

CVIDF1 =
2CVIDP× CVIDR

CVIDP + CVIDR
, (9)

where CVIDP and CVIDR denote the cross-view subject
matching precision and recall, respectively. We further de-
fine the cross-view matching accuracy – CVMA, as

CVMA = 1−
(∑

t mt + fpt + 2mmet∑
t gt

)
, (10)

where mt, fpt, mmet are the numbers of misses, false posi-
tives, mismatch pairs of cross-view object matching at time
t, and gt is the total number of objects in both top and hori-
zontal views at time t.

4.2 Experiment Setup

We implement the main program in Matlab and on a desk-
top computer with an Intel Core i5 3.4GHz CPU, and
the Siamese network for cross-view appearance similarity
measurement is implemented on GPU. We use the general
YOLOv3 (Redmon et al. 2016) detector to detect subjects

in the form of bounding boxes in both top- and horizontal-
view videos. For top-view subject detection, we fine-tune
the network using 600 top-view human images. For training
the Siamese based network, given a subject detected in the
top-view frame, we use it paired with its corresponding sub-
ject in horizontal view as a positive sample, and paired with
other subjects as a negative training sample. Note that all
the training data have no overlap with our test dataset. The
pre-specified parameters w1, w2 and c0 are set to 0.3,0.5 and
0.3, respectively. The mixed integer programming problem
is solved by the MIP solver of cplex.

We choose three multiple object trackers, i.e., GMMCP
(Dehghan, Assari, and Shah 2015), MDP (Xiang, Alahi,
and Savarese 2015), and DMAN (Zhu et al. 2018) as the
compared methods. Among them, GMMCP uses the color
histogram based appearance feature and constant velocity
model based motion feature for data association, which is
same with our single-view data association. Both MDP and
DMAN are single object tracker based online MOT ap-
proaches, where DMAN learns deep appearance features
for data association. All the comparison trackers are imple-
mented to track on the top-view and horizontal-view videos
separately, initialized with the ground-truth subjects and la-
bels on the first frame. Note that, for fair comparison, we use
the same subject detector for all the methods, including the
proposed method and these comparison methods. In prac-
tice, we did not find existing methods with code that can han-
dle the proposed cross-view multiple objects tracking. One
seemingly related work is Xu et al. (2016; 2017) for cross-
view multiple people tracking. However, we could not in-
clude it directly into comparison because it assumes multiple
horizontal or sloped views and can still use pose/appearance
features for data association, which is not applicable to the
top-view videos used in this paper.

4.3 Results

We evaluate the proposed method on our dataset. We eval-
uate the single-view MOT results using the standard MOT
metrics. We show the results of different trackers in Ta-
ble 1(left). We find that although using the same features as
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Figure 4: Cross-view subject matching results over time.

GMMCP in single-view data association, our method out-
performs GMMCP by a wide margin in the ID-related met-
rics. The proposed method achieves the comparable perfor-
mance with the state-of-the-art DMAN tracker.

Moreover, we divide the dataset into top-view and
horizontal-view videos and evaluate the MOT performance,
respectively. As shown in Table 2, we can first find that the
tracking results in top view shows better performance com-
pared to horizontal view. This is due to the mutual occlu-
sions which frequently appear in the horizontal view but are
rare in top view. In this case, the proposed method achieves
better tracking results in horizontal view with the assistance
of tracking in top view. As for top-view tracking, the pro-
posed method outperforms GMMCP by a large margin with
the cross-view joint optimization for data association. The
result verifies that the top view and horizontal view are com-
plementary in improving the tracking accuracy.

Besides the standard MOT metrics, we also compare the
cross-view MOT performance using CVIDF1 and CVMA
as shown in Table 1(right). While the selected comparison
methods can only handle the single-view tracking, we pro-
vide the ground-truth ID of each subject on the first frame
of both views. This way, the tracking on each view actu-
ally propagate the subject IDs to later frames and from the
IDs, we can match the subjects across views over time. We
can find that all the three compared trackers produce very
poor results because the cross-view subject matching will
fail once a target is lost in tracking in any one view. The
proposed method can produce an acceptable CVIDF1 and
CVMA results of 84.0% and 78.3%, respectively. To better
evaluate the cross-view MOT, we show the average CVIDF1

and CVMA scores over time3. As shown in Fig. 4, we can
find that the performance of all the single-view trackers
show a downward trend. Our method shows a steady scores
with no performance decrease over time.

Actually, MOT is expected to maintain the subject ID af-
ter the initialization on the first frame. We evaluate the ID
accuracy over time based on the consistency of current and
initial ID numbers. As shown in Fig. 5, DMAN performs
best in the top view. However, in the horizontal view, our
approach gets better performance than other trackers as the
frame number increases. This is because our approach can

3In this experiment, we only consider the first M frames of each
video, where M is the minimum length of all the videos. This way,
we can compute the average CVIDF1 and CVMA scores of all the
videos frame by frame.
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Figure 5: ID consistency accuracy over time in top view (a)
and horizontal view (b).

re-identify the horizontal-view subjects by associating to the
tracked subjects in the top view.

4.4 Ablation Studies

Features for similarity measurements. We study the in-
fluence of using different similarity measures. As shown in
Table 3, ‘w/o sv-App’ and ‘w/o Motion’ denote the pro-
posed method without the appearance and motion features
in single-view data association, respectively. And ‘w/o cv-
App’ and ‘w/o Spatial’ denote the proposed method without
the appearance and spatial features in cross-view data asso-
ciation, respectively. The results in the first and second rows
show that using only one of the single-view data associa-
tion features cannot achieve performance as good as the pro-
posed method that combines both two. However, using any
one of the two types of features can achieve the acceptable
results. By comparing the results in the third and fourth rows
with the last row, we can see that the proposed method using
only appearance features produces poor results in cross-view
subjects matching, which verifies the appearance is not very
useful for human association across two views. Fortunately,
spatial reasoning provides more accurate information than
appearance features in cross-view data association.

Table 3: Comparative study of using different association
features. ‘sv-App’ and ‘w/o Motion’ denote the appearance
and motion features in single views. ‘cv-App’ and ‘Spatial’
denote the appearance and spatial features in cross views.

Features IDF1 MOTA CVIDF1 CVMA
w/o sv-App 71.4 84.0 83.4 77.6
w/o Motion 71.1 83.9 81.9 76.4
w/o cv-App 72.1 84.1 82.6 76.5
w/o Spatial 62.6 81.4 15.5 25.9
Ours 77.1 84.2 84.0 78.3

Parameters selection. There are three free parameters in
the proposed method: w1, w2 in Eq. (8), Eq. (9) and c0 in
Eq. (1). We examine their influence to the final tracking
performance. Table 4 reports the results by varying one of
these three parameters while fixing the other two. We can see
that the final tracking performance, including standard MOT
metrics, i.e., IDF1 and MOTA or cross-view MOT metrics,
i.e., CVIDF1 and CVMA, are not very sensitive to the se-
lected values of these three parameters.

10922



Table 4: Results by varying values of w1, w2 and c0.
w1 IDF1 CVIDF1 MOTA CVMA w2 IDF1 CVIDF1 MOTA CVMA c0 IDF1 CVIDF1 MOTA CVMA
0.2 74.9 82.7 84.2 77.4 0.4 76.2 83.7 84.1 78.1 0.2 77.0 81.4 84.3 77.1
0.3 77.1 84.0 84.2 78.3 0.5 77.1 84.0 84.2 78.3 0.3 77.1 84.0 84.2 78.3
0.4 77.5 82.8 84.3 77.8 0.6 76.8 83.6 84.2 78.2 0.4 73.3 83.2 84.3 77.5

Figure 6: Case analysis of long-term occlusion (top) and out-of-view (bottom) scenario.

4.5 Discussion

Occlusion and out of view. In horizontal-view videos, it
is common to have subjects with mutual occlusion and be-
ing out-of-view. In this case, existing online trackers, e.g.,
DMAN can not associate the long-term lost subjects when
they reappear in the view. Two examples are shown in Fig. 6.
The top two rows show the case of mutual occlusions. From
the top view at frame #180, we can find that two subjects (ID
number 2, 3) are occluded by others and DMAN switches
the ID of them when they reappear in the field of view at
frame #210. Our method keeps the original ID number. Sim-
ilarly, we focus on the key subject (ID number 4) which goes
out of view at frame #165 in the horizontal view. We can
find that this subject is reassigned to a new ID number by
DMAN. Our approach gets the original ID number of the
target, which is consistent to its ID number in the top view.

Table 5: Time performance of each component (sec/frame).
Component tracklet sv-sim cv-sim solution
Time 0.16 0.26 0.06 0.10
Proportion 27.5% 44.7% 9.6% 18.2%

Speed analysis. As shown in Table 5, we record the run-
ning time taken by each component of the proposed method.
In this table, ‘tracklet’ denotes the single-view tracklet con-
struction, ‘sv-sim’ and ‘cv-sim’ denote the single-view and
cross-view data similarity computation, respectively. ‘so-
lution’ denotes the step of solving the optimization prob-
lem. We can find that the single-view similarity computation

takes 44.7% of the total running time. The total time taken
by cross-view similarity computation and final optimization
is similar to that taken by the tracklet construction. This
demonstrates the time efficiency of the proposed cross-view
similarity computation and optimization. We further com-
pare the speed of our approach with three comparison MOT
trackers. From Table 6, we can find that our method runs
faster than MDP and DMAN. Note that, our main program
is implemented in Matlab with CPU and it can get much
faster with the multithreading or GPU acceleration.

Table 6: Running speeds of different methods (frames/sec).
Type Ours GMMCP MDP DMAN
Speed 1.74 2.44 0.77 0.91

5 Conclusion

In this paper, we have studied a new problem to track multi-
ple subjects in the complementary top and horizontal views.
We formulate a joint optimization problem for the subjects
association in the time-space domain. In each view, the data
similarity over time is represented by appearance and mo-
tion features. Across the top and horizontal views, the data
similarity is represented by spatial and appearance reason-
ing. We solve the optimization problem by a constrained
mixed integer programming algorithm for final cross-view
multiple subject tracking. We collect a new complementary-
view dataset, as well as manually label the ground truth, for
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performance evaluation. Experimental results on this dataset
demonstrate that the proposed MOT method can collabora-
tively track subjects in both views, by providing both the
global trajectory and the local details of the subjects.
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