
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020 2999

Selective Spatial Regularization by Reinforcement
Learned Decision Making for Object Tracking

Qing Guo , Ruize Han, Wei Feng , Member, IEEE, Zhihao Chen, and Liang Wan

Abstract— Spatial regularization (SR) is known as an effective
tool to alleviate the boundary effect of correlation filter (CF),
a successful visual object tracking scheme, from which a num-
ber of state-of-the-art visual object trackers can be stemmed.
Nevertheless, SR highly increases the optimization complexity
of CF and its target-driven nature makes spatially-regularized
CF trackers may easily lose the occluded targets or the targets
surrounded by other similar objects. In this paper, we propose
selective spatial regularization (SSR) for CF-tracking scheme.
It can achieve not only higher accuracy and robustness, but also
higher speed compared with spatially-regularized CF trackers.
Specifically, rather than simply relying on foreground informa-
tion, we extend the objective function of CF tracking scheme to
learn the target-context-regularized filters using target-context-
driven weight maps. We then formulate the online selection of
these weight maps as a decision making problem by a Markov
Decision Process (MDP), where the learning of weight map selec-
tion is equivalent to policy learning of the MDP that is solved by
a reinforcement learning strategy. Moreover, by adding a special
state, representing not-updating filters, in the MDP, we can learn
when to skip unnecessary or erroneous filter updating, thus
accelerating the online tracking. Finally, the proposed SSR is
used to equip three popular spatially-regularized CF trackers to
significantly boost their tracking accuracy, while achieving much
faster online tracking speed. Besides, extensive experiments on
five benchmarks validate the effectiveness of SSR.

Index Terms— Visual object tracking, correlation filter, selec-
tive spatial regularization, MDP, reinforcement learning.

I. INTRODUCTION

ONLINE object tracking is a fundamental problem of
computer vision and has been widely employed in many
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tasks, such as smart surveillance, human-machine interac-
tion and robotic perception [1]. Given the initial position
of a target denoted by a bounding box at the first frame,
a tracker aims to predict tight bounding boxes wrapping
the target in subsequent video frames. Online learning an
effective appearance model of the target is crucial for accu-
rate and reliable visual object tracking [2]. With the rapid
development of machine learning methods, such as support
vector machine (SVM) [3], [4], subspace learning [5], online
multi-instance boosting [6], sparse and compressive recon-
struction [7], [8], correlation filter (CF) [9]–[12], and convolu-
tional neural network (CNN) [13], [14], a number of powerful
models representing the target appearance are proposed to
construct successful visual object trackers.

In particular, CF is a notable tracking scheme that can
learn a robust appearance model for the target online, based
on which many successful real-time trackers have been con-
structed [9], [10], [15]–[17]. However, these CF-based trackers
suffer from the boundary effect. Being a major inherent
drawback of the CF scheme, boundary effect can easily fail the
tracking under the condition of cluttered background and fast
motion. Spatial regularization (SR) [18]–[22] is then proposed
to alleviate this problem by using a spatially-variant weight
map to penalize the filter coefficients in the background,
which leads to a target-regularized CF model. Although
spatially-regularized CF trackers can achieve much higher
accuracy than the original CF counterparts, there still exist
two limitations that hamper real-world feasibility of these
successful trackers.

First, spatially-regularized CF trackers are prone to lose
the target when it is severely occluded or surrounded by
other objects with similar appearances, since the learned
target-regularized model relies only on the foreground and
ignores most of the context information. As shown in Fig. 1,
when we track a girl who is fully occluded, a typical
spatially-regularized CF tracker, i.e., SRDCF [18], produces a
false high response at the background region and loses the girl,
which further leads to erroneous filter updating and encumbers
the re-detection of the girl when she re-appears in subsequent
frames. Intuitively, such problem can be alleviated by using
more discriminative features [16] and sophisticated learning
methods [19]. However, it either requires much larger efforts
to select suitable training data or significantly slows down
the online tracking. Second, embedding a spatially-variant
weight map into the objective function of CF scheme highly
increases the complexity of online filter updating. As a result,
spatially-regularized CF trackers are usually slow and not
suitable for real-time visual tracking tasks.
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Fig. 1. Comparison between SRDCF [18] and the proposed selective spatial regularization based discriminative CF (SSR-DCF) on the cases of occlusion
and background clutter. The bounding box results, their response maps, and the information they relied on are shown. When the targets are fully occluded
or surrounded by similar objects, e.g., frame #112 in ‘girl2’ and frame #168 in ‘soccer’, SRDCF uses filters that only rely on the target information for
localization and produces a false high response at the background, which further leads to erroneous filter updating and encumbers the re-detection of the target
at subsequence frames. In contrast, SSR-DCF utilizes the context information when above severe situations happen and gets more discriminative response maps
than SRDCF, which further avoids erroneous filter updating and enables to re-detect targets when interferences disappear. Please find intuitive explanations in
the text.

To address the first problem, we consider tracking an inter-
ested target via its context region when the appearance of itself
is unreliable due to the severe occlusion or background clutter.
Specifically, when a video contains camera motion, object
group motion, or the target moves slowly between neighboring
frames, background around the target, i.e., the context, usually
has the same or similar motion with the target itself temporar-
ily and their relative positions between neighboring frames are
almost the same. Hence, it is possible to track a target through
its context when it is severely occluded and surrounded by
similar objects. For example, when we try to track a girl,
i.e., the first case in Fig. 1, who is fully occluded by a man
at the 112 th frame, we can infer her position according to
the unoccluded context, e.g., the boy at left side, the grass,
or the ground, since their relative positions to the girl in the
112 th frame are almost the same with the ones in neighboring
frames, e.g., the 104 th frame. Moreover, for the ‘soccer’
case where the camera keeps moving, although the target,
i.e., the head of the center player, is surrounded by cluttered
background with similar appearance, we can locate the player’s
head by his body or other players, since relative positions
between them do not change among neighboring frames.
To take the advantages of context, we extend the CF-tracking
scheme and use filters learned from context for tracking when
the target appearance is unreliable and we denote the filters
as context-regularized filters. As shown in Fig. 1, compared
the typical spatially-regularized CF tracker, i.e., SRDCF, our
method using context-regularized filters can locate targets
accurately under severe occlusion or background clutters.
Moreover, context-regularized filters restrict the search region
at subsequent frames in a close range from the position where
the target is lost, and make the tracker able to re-detect the
target when it re-appears.

Similar ideas have been introduced by [23]–[25] that use
both object and context cues to estimate the target position.

However, they construct models with intensities or local
features that have not enough discriminative power for reliable
visual tracking under complex scenes.

For the second problem, i.e., the complexity, of spatial
regularization, we try to skip unnecessary or erroneous filter
updating, which can not only speed up the online track-
ing significantly but also further improve the performance
by avoiding the corruption of filters. How to learn such
context-regularized filters effectively and deciding whether
to skip unnecessary or erroneous filer updating are two
keys to achieve two things mentioned above. In this paper,
we propose selective spatial regularization (SSR) for the
CF-tracking scheme, which can obtain higher tracking accu-
racy and robustness, and meanwhile is much faster dur-
ing the online process. The major contributions of this
work are:

• We propose an extended objective function for CF track-
ing scheme to generate target-context-regularized filters
by selectively using target-context-driven weight maps to
regularize the learning of correlation filters.

• We formulate the online selection of different weight
maps as a decision making problem via a Markov
Decision Process (MDP), where the learning of weight
map selection is solved by policy learning of the MDP
through a reinforcement learning strategy. Moreover,
by adding a special state, representing not-updating
filters, in the MDP, we effectively learn when to
skip unnecessary or erroneous filter updating, thus
to accelerate the online tracking without harming the
accuracy.

• We use the proposed SSR to improve three pop-
ular spatially-regularized CF trackers, SRDCF [18],
CCOT [19] and ECO [20], which validates the fea-
sibility and generality of SSR. Extensive experiments
on OTB-2013 [26], OTB-2015 [27], VOT-2016 [28],
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TC-128 [29], and LaSOT [30] verify the superiority of
our method over state-of-the-art competitors.

II. RELATED WORK

A. Correlation Filter Based Tracking

An early work, i.e., [10], proposes a correlation filter (CF)
tracker that can run at 669 fps with a single CPU. In recent
years, numerous methods have been proposed to improve the
CF tracker by equipping it with the kernel trick [9], multi-
kernel learning [31], [32], multiple types of features [33],
scale adaption strategies [15], [34], deep features [16], [35],
[36], and optical flows [37]. Although these trackers have
much higher accuracy than the one in [10], they still suffer
from the inherent problem of CF scheme, i.e., the boundary
effect [18], [38], which limits the further improvement of
these methods.

Spatial regularization (SR) is proposed to learn a
target-regularized CF model whose boundary effect is alle-
viated and leads to three effective trackers, i.e., Spatially-
regularized Discriminative CF (SRDCF) [18], Continuous
Convolution Operator Tracker (CCOT) [19], and Efficient
Convolution Operator (ECO) [20] which significantly increase
the tracking accuracy of the original CF tracker. However,
the spatially-regularized CF trackers have two limitations.
First, they are prone to lose the target when it is severely
occluded or surrounded by similar objects, since the learned
target-regularized CF model relies only on the foreground
and ignores most of the context information. Second, the SR
significantly increases the complexity of online filter updating.
As a result, SRDCF and CCOT are slow and not suitable for
real-time visual tracking tasks.

More recently, [20] proposes Efficient convolution operators
for tracking (ECO) and further improves the performance and
speed of CCOT by reducing the number of coefficients in fil-
ters, managing training samples and updating filters at a fixed
interval. Nevertheless, improvements mentioned above cannot
handle the first problem of spatially-regularized CF trackers
directly. In addition, the skipping strategy for filter updating
ignores the online detection results and may lead to erroneous
updating. Reference [39] optimizes the SR-embedded CF
objective function via alternating direction method of mul-
tipliers with a temporal regularization term and constructs a
tracker that has much higher accuracy and runs even faster than
SRDCF. Reference [40] online calculates spatial reliability
map to select target parts suitable for tracking and achieves
higher accuracy than SRDCF on VOT datasets [41]. Refer-
ence [42] proposes a background-aware CF tracker that learns
a target-regularized CF model with real negative samples
extracted from background. Although above methods do better
than SRDCF and run even faster, they ignore the importance
of context information and may easily lose the target when
the target-regularized CF model becomes unreliable, which
usually happens in cases of severe occlusion or cluttered
background. In this paper, we propose selective spatial regular-
ization (SSR)-based CF by using context-regularized filters to
track a target when the target-regularized filters are unreliable,
which helps track the target accurately under challenging
situations.

Two recent works [33], [43] are related to our method.
Reference [43] proposes the adaptive spatially-regularized
CF (ASRCF) by simultaneously optimizing filters and the spa-
tial regularization weight map. Intuitively, ASRCF generates
an adaptive target-driven weight map and focuses on selecting
effective target regions for filter learning. In contrast, our work
mainly explores how to use effective context regions indicated
by a context-driven weight map to get context-regularized
filters for accurate tracking even under severe occlusion and
background clutter. Reference [33] designs a multi-expert
strategy to learn target-regularized CFs from various features
and use the divergence of multiple experts to adaptively update
filters. In this paper, we adopt a reinforcement learned MDP
to guide the online updating of CFs. By adding a status
representing not-updating filters, we can learn when to skip
unnecessary or erroneous filter updating. More importantly,
different from above two works, our method is a universal
scheme for spatially-regularized CF trackers and improves
three popular methods, i.e., SRDCF, CCOT, and ECO, with
much higher performance on OTB, VOT-2016, TC128, and
LaSOT benchmarks.

B. Context Assisted Tracking

The strong potential relationship between the target and its
context has been studied by many works [23], [24], [44]–[49].
References [23] and [44] propose methods that simultaneously
construct target and context appearance models base on color
features to help locate the target even if it is occluded.
References [24] and [46] use local feature points extracted
from target and background regions to construct ‘supporters’
to decide the target position. However, local feature points
from background are easily affected by occlusion, lighting and
local geometry variation. Reference [45] then proposes to use
region features and local feature points to build the context
appearance model and target appearance model respectively to
jointly track the target. Reference [47] models CF scheme as
a context learning process that jointly uses target and context
information for tracking. Although effective in some challenge
scenes, above works focus on how to simultaneously use target
and context information to track a target accurately. However,
under a real-world scene, the context is usually dynamic and
affected by complex interferences, e.g., occlusion, motion
blur, and deformation. It has to take extra computing sources
to find effective context regions for tracking [44], which may
slow down the tracking process significantly. An alternative
solution is to employ the context information when the target
appearance is unreliable. In this paper, we propose a method
selectively using target and context appearance models to track
a target. The selection is formulated as a decision making
problem by a Markov Decision Process (MDP) whose decision
policies are learned via reinforcement learning.

C. Handling Occlusion and Background Clutter for Tracking

Occlusion and background clutter usually result in the
erroneous updating of target appearance models. An available
solution is to skip the updating process when we detect
occlusion and background clutter [50]. A lot of works have
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Fig. 2. Examples of target-context-driven weight maps and their cor-
responding target-context-regularized filters. By regularizing filters with
target-context-driven weight maps, the learned filters only have values at
target-context regions, respectively.

studied how to handle occlusion for object tracking [50]–[54].
References [50] and [51] explicitly detect pixel-level occluded
regions through a background subtraction method. Such meth-
ods are only suitable for the videos with fixed cameras and
easily fail the tracking in complex scenes. Reference [53]
represents a target as a set of parts and determines if a
part is occluded or not by comparing it with detected target
and background regions. Instead of splitting the target into
parts, [54] proposes to compare a detected target with its
context and a set of target samples cropped from previous
frames to determine if the target is occluded or not. Although
effective, such method needs extra storage to save the target
samples and is time-consuming due to several times of com-
parison. Instead of detecting occlusion and background clutter
explicitly, we embed them into decision policies of a Markov
Decision Process that determines when to skip updating or use
context information to locate the target.

III. BACKGROUND

In this paper, we focus on correlation filter (CF) [9], [10]
based single object tracking. Given a set of samples cropped
from historical frames according to tracking results of a target,
we aim to learn filters to locate the target in a search region
cropped from an incoming frame. The samples usually have
larger sizes than the bounding boxes of the target and contain
both target and context information, as shown in the first row
of Fig. 2. To learn filters, we first extract features of those
samples and obtain X = {Xk ∈ �M×N×D |k = 1, . . . , |X |},
where (M, N), D and |X | denote the spatial size, number of
dimension and number of samples, respectively. Then, given
a regression objective, i.e., Y ∈ �M×N being a 2D Gaussian
map having high values at the target and low values at the
background, we learn filters by minimizing

E(F,X ) = 1

2

|X |∑
k=1

αk�S(Xk) − Y�2 + λ

2

D∑
d=1

�Fd�2, (1)

with

S(Xk) =
D∑

d=1

Xd
k ∗ Fd (2)

where F ∈ �M×N×D is the desired filters, ‘∗’ denotes
the circular convolution, and αk is the exponentially decay-
ing weight [18]. Minimizing Eq. (1) w.r.t. F can be effi-
ciently solved in frequency domain where ‘*’ becomes
element-wise multiplication, which results in beyond real-time
trackers [9], [10]. However, CF trackers mainly suffer from
two drawbacks. First, they have to use samples and search
regions with restricted size, thus struggle in the case of fast
motion, since a naive expansion of training samples to include
more context information significantly degrades the discrim-
inative power of learned F [18]. Second, with the circular
convolution, CF trackers actually regard the samples in X and
their circularly shifted versions as positive and negative sam-
ples, respectively, which leads to the boundary effect and sig-
nificantly reduces the tracking performance [9], [38]. Spatially
regularized discriminative correlation filters (SRDCF) [18] is
then proposed to alleviate the two problems by replacing
the second term of Eq. (1) with a spatial regularization term

E(F,X ) = 1

2

|X |∑
k=1

αk�S(Xk) − Y�2 + 1

2

D∑
d=1

�Wt � Fd�2,

(3)

where Wt ∈ �M×N is a target-driven weight map that has
high penalties at the context and low ones at the target, thus
suppresses the coefficients of F in the context. We have

Wt(x, y) = μ + η(
x − x0

w
)2 + η(

y − y0

h
)2, (4)

where (x, y), (x0, y0) and (w, h) denote the coordinate, target
position and target size on Wt, respectively. In practice, Wt is
further smoothed by preserving only 10 non-zero frequency
coefficients. The spatial regularization term can not only
alleviate the boundary effect of CF but also avoid inclusion of
substantial amount of context information within the filters.
The left subfigure of Fig. 2 shows a case of Wt and the
learned filters that only has valid values at the target region
and can be regarded as target-regularized filters. Although
much more accurate than the CF tracker, SRDCF still has
two problems. First, it runs very slowly (about 4 fps with
HOG features) since the spatial regularization term breaks
the element-wise operations of CF in frequency domain when
we minimize Eq. (3) w.r.t. F. Second, SRDCF may lose the
target when target-regularized filters become unreliable. For
example, in Fig. 1, SRDCF misses the two targets when they
are occluded or under background clutter. To overcome the two
problems, we propose selective spatial regularization (SSR)
that not only speeds up online process of spatially-regularized
CF trackers but also keeps tracking under severe situations,
e.g., occlusion and background clutter.

IV. OUR APPROACH

In the following, we first introduce selective spatial regu-
larization (SSR) for CF that regularizes filters by selectively
using weight maps driven by the target and its context. We then
formulate the online selection of weight maps as a deci-
sion making problem by a Markov Decision Process (MDP)
and detail the way of training decision policies via
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reinforcement learning. We finally present the implementation
details of the proposed method.

A. Selective Spatial Regularization (SSR)

When we track an interested target, instead of using filters
that mainly related to target appearance [18], we propose to
use two kinds of filters to locate the target, i.e., target-
regularized filters Ft ∈ �M×N×D , and context-regularized
filters Fc ∈ �M×N×D that take charge of the target and
context appearance models, respectively. Specifically, given
representative samples, i.e., X = {Xk ∈ �M×N×D |k =
1, . . . , |X |}, that center at the target and are collected from
historical frames, we separate each sample to two regions,
i.e., target region and its context region, as shown in the first
row of Fig. 2, and learn Ft and Fc relying on the two regions,
respectively. To this end, we define an objective function to
selectively learn Ft and Fc

E(F,X , s)= 1

2

|X |∑
k=1

αk�S(Xk)−Y�2+ 1

2

D∑
d=1

�W(s) � Fd�2,

(5)

with

W(s) =

⎧⎪⎨
⎪⎩

Wt, if s = 1

Wc, if s = −1

Wn, if s = 0,

(6)

where Wc = max(Wt) − Wt + min(Wt) with Wt defined in
Eq. (4). We set Wn = +Inf that forces all coefficients of filters
to be zero, which means that it is unnecessary to learn filters.
s ∈ {0, 1,−1} is a selector to determine which spatial weight
map should be used to regularize the filters. Intuitively, when
W(s) = Wc, the target region is assigned larger penalties than
the context region, as shown in the second row of Fig. 2, which
makes the learned filters have zero values on the target region
and only rely on the context information after optimizing
Eq. (8), and we obtain the Fc. Similarly, we can get Ft by
setting W(s) = Wt. We denote Wt and Wc as target-driven
and context-driven weight maps, respectively, and have

Ft = arg min
F

E(F,Xt, 1), (7)

Fc = arg min
F

E(F,Xc,−1). (8)

Fig. 2 shows examples of learned Ft and Fc according to
Wt and Wc, respectively. The target-context-regularized filters,
i.e., Ft and Fc, only have valid values at the target and context
regions, respectively.

Based on Eq. (7) and (8), we summarize SSR-based CF
tracking as follows:

i. At the first frame, we learn target-regularized filters by
Eq. (7) with Xt = {X1} where X1 is the feature of a
training sample cropped from the first frame. We then
set the frame index as τ = 2.

ii. Loading frame τ , we crop a search region centering at
the target position of frame τ −1 and extract its feature,
i.e., Zτ ∈ �M×N×D . We then obtain a response map
with Cτ = ∑D

d=1 Zd
τ ∗ Fd

t .

Fig. 3. State transition of MDP for online selecting weight maps. ai ∈ A
is an action to transform one state to another. At the first frame, we initialize
s = 1 to learn target-regularized filters.

iii. Selecting a spatial weight map from {Wt ,Wc,Wn}
according to Cτ and the MDP introduced in
Section IV-B. If Wt is selected, we locate the target
according to position of the maximum of Cτ and crop a
sample centering at the position whose feature, i.e., Xτ ,
is added to Xt . We then update Ft by Eq. (7). If Wc is
selected, Ft is regarded unreliable due to interferences,
e.g., occlusion and background clutter. We then set Xc =
{Xτ−1} and learn Fc by Eq. (8). We can obtain a new
response map by C�

τ = ∑D
d=1 Zd

τ ∗ Fd
c whose maximum

indicates the target position. If Wn is selected, we skip
the updating process at frame τ to avoid unnecessary or
error updating of xFt and use the maximum of Cτ to
locate the target.

iv. Setting τ = τ + 1 and going to step ii to continue
tracking.

By selectively using spatial weight maps to obtain target-
context-regularized filters or skip updating, we can track a
target with high online speed even if the target is under severe
interference. As shown in Fig. 1, when a target is occluded
or surrounded by similar objects, i.e., # 112 and # 168 in
the cases of occlusion and background clutter, respectively,
SRDCF only using Wt to learn Ft, gets a high response
on background and misses the target at subsequent frames.
In contrast, by assuming the target and its context have similar
motion between neighbor frames, Fc learned by SSR-DCF
with Wc can still detect the target at # 112 and # 168 and helps
re-detection at subsequent frames. However, it is important
but difficult to determine which spatial weight map should be
selected during online tracking. In Section IV-B, we regard the
selection of weight maps as a Markov Decision Process (MDP)
that makes a decision for selection with a learned policy.

B. Online Selection by Markov Decision Process (MDP)

We formulate the selection of weight maps in Eq. (6),
as a Markov Decision Process (MDP) that consists of a tuple
(S,A, T(·), R(·)) where S, A, T(·) and R(·) denote the set
of states and actions, state transition function and real-valued
reward function. We detail them in following:

1) MDP Formulation: We set the state space of weight
map W as S = {Wt, Wc, Wn}, and define eight transitions
to change the state of W, which corresponds to eight actions,
i.e., A = {ai |i ∈ [1, 8]}, in Fig. 3. Given a state of W and
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an action, the transition function converts W to another state.
For example, the conversion of W from Wt to Wc by a1 can
be represented as T(Wt, a1) = Wc. We summary the available
transitions in Fig. 3.

At the first frame, we initialize W as Wt and learn
target-regularized filters, i.e., Ft, by Eq. (7). During online
tracking, if Ft is unreliable, which is caused by some
interferences, e.g., occlusion and background clutter, we do
W = T(Wt, a1) to learn context-regularized filters, i.e., Fc,
to detect a target, if Ft is discriminative enough to separate
target from background, which implies the target does not
change significantly, we set W = T(Wt, a8) to skip unneces-
sary updating of Ft to speed up tracking. Otherwise, we keep
W = T(Wt, a2). When W = Wc, we convert it back to Wt
by T(Wc, a3) if Ft is able to split the target from background
again. However, if W = T(Wc, a4) keeps for a long time (over
5 frames), we assume the target is lost and do W = T(Wc, a5)
to avoid error updating of filters. During this state, we re-detect
the target with latest updated Ft . Once the target is re-detected,
we set W = T(Wn, a7) to update target-regularized filters.

To make the transitions metioned above work as expected
during online tracking, a policy should be learned for each
state of W to decide which action should be taken, which
is equivalent to detecting if interferences, e.g., occlusion and
background clutter, happen and make Ft unreliable.

2) Policies of MDP: Given the state of W, a policy deter-
mines which action to take, which is equivalent to selecting
different weight maps according to the reliability of Ft.

For the policy at the states Wt and Wc, MDP makes decision
between Wt, Wc, and Wn to regularize filters, which can be
regarded as a classification problem. We thus train three binary
Support Vector Machines (SVMs) for the three weight maps,
respectively, by taking the response map Cτ = ∑D

d=1 Zd
τ ∗ Fd

t
as input and make a decision via Eq. (6) with

s = arg min
l∈{−1,0,1} ω

�
l φ(Cτ ) + bl , (9)

where l = −1, 0 and 1 is to set weight map as Wc, Wn and Wt,
respectively, and φ(·) calculates the features of Cτ and will
be introduced in Section IV-B.3. Similarly, for the policy at
the state of Wn, we just need to select between Wt and Wn
by solving s = arg minl∈{0,1} ω�

l φ(Cτ ) + bl .
We can learn ωl and bl by collecting Cτ and the ground

truth transitions of weight map as training samples, which is
equivalent to maximizing following reward function

R(W, a) =
∑

l∈{−1,0,1}
yl(a)(ω�

l φ(Cτ ) + bl), (10)

where W ∈ S, a ∈ A, and yl(a) ∈ {false, true}. We set yl(a) =
true if an action a can do the same weight map transition with
the one indicated by l. Otherwise, yl(a) = false. For example,
when the activate weight map is Wt, the MDP takes action a1
to transform it to Wc. Then, we should set y−1(a1) = true,
y−1(a2) = false and y−1(a8) = false. Given the ground truth
actions during online tracking, we can maximize Eq. (10) to
learn three SVMs. In practice, we realize the proceess in a
reinforcement learning fashion on a synthetic video, which
will be introduced in Section IV-C.

Fig. 4. Three examples of response maps, i.e., Cτ , under situations of normal,
occlusion and background clutter, respectively. The red rectangles show the
detect results according to maximum of Cτ . The green rectangles show the
ground truth.

3) Features φ(·): The reliability of target-regularized filters,
i.e., Ft , is crucial to the state transition of MDP and can be
represented through response map that is generated by using
Ft to detect the target, i.e., Cτ = ∑D

d=1 Zd
k ∗ Fd . Clearly, if Cτ

has very high values at the position of the target and low values
at the background, Ft is reliable and can separate target from
the background very well. Otherwise, Ft is unreliable. Hence,
we extract information from Cτ via φ to represent the relia-
bility of Ft. We define φ(Cτ ) = [max(Cτ ), apce(Cτ )] where
max(Cτ ) outputs the maximum of Cτ . apce(Cτ ) represents
the average peak-to-correlation energy (APCE) [55] defined as
apce(Cτ ) = �max(Cτ )−min(Cτ )�2

avg(Cτ −min(Cτ )) . Fig. 4 shows three examples
of response maps and their maximum and APCE values in
the situations of normal, occlusion and background clutter.
When a target is occluded or surrounded by similar objects,
the response maps lead to erroneous detection results with the
max(Cτ ) and apce(Cτ ) reducing significantly. Hence, we can
use the maximum and APEC of the response map to determine
if Ft is reliabile.

C. Reinforcement Learning for MDP

Since the value range of response map differ from each
video, it is difficult to learn unified weight ωl and bias
bl in Eq. (10) for all videos offline. Thus, we learn ωl

and bl through reinforcement learning on a synthetic video
generated from the first frame of a test video using data
augmentation.

1) Synthetic Video Generation: Given the first frame I1 of
a testing video V = {Iτ }|V |

1 , we generate a synthetic video
Ṽ = {Ĩτ }Nv

1 by circularly shifting I1, adding artificial occlusion
and motion blur to simulate target translation, occlusion and
appearance variation, respectively. Nv is the specified video
length. To make the transition between states of MDP happen
frequently, we implement image shifting and artificial occlu-
sion alternately, and add motion blur with random kernel size
and direction at each frame. Specifically, when generating
frame τ , i.e., Ĩτ , we just circularly shift I1 with random
values on horizontal and vertical coordinates, respectively.
Then, a randomized motion blur is added to I1. To generate
Ĩτ+1, we add occlusion to Ĩτ by replacing part of the target
in Ĩτ with a region randomly cropped from the background
of the first image. An example of a synthetic video is shown
in Fig. 5.
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Fig. 5. An example of generated synthetic video and learned binary SVMs.
The left subfigure shows the tracking results via white bounding boxes and
selectors s at the top right corner. The right subfigure shows the sample
distribution of the synthetic video and the classification hyperplanes of three
SVMs which separate the sample space into three regions. Each sample
corresponds to φ(Cτ ) = [max(Cτ ), apce(Cτ )] calculated from frame τ and
is colored by red, blue and green, respectively, according to selector.

2) Reinforcement Learning of ωl and bl : With Ṽ = {Ĩτ }Nv
1 ,

we aim to learn MDP policy to track the target on all
frames of Ṽ accurately. We initialize ωl = 0.15 + �ω and
bl = 0.05 + �b where �ω and �b are randomly selected
from [-0.1,0.1] and [-0.01, 0.01], respectively. The 0.15 and
0.05 are empirical values and help train better policies for
the MDP. The training set Tl is initialized as empty. With
such initial policy, we track the target through the process
introduced in Section IV-A. At frame τ , we first obtain the
ground truth action by comparing the localization precisions
of using target-regularized filters, i.e., Ft, context-regularized
filters, i.e., Fc, and updated Ft to detect target, respectively,
where the updated Ft is to update Ft with sample cropped
from frame τ . Specifically, if Ft misses the target while Fc
detects it accurately, the action that transfers W to Wc should
be taken. If Ft could obtain similar or better precision than its
updated version or both Ft and Fc miss the target, the action
that transfers W to Wn should be taken to avoid unnecessary or
error updating of Ft . Otherwise, we keep W = Wt . If Eq. (9)
cannot generate the same decision with the ground truth action,
we add the corresponding response map φ(Cτ ) and ground
truth action agt

τ into Tl and learn the ωl and bl by solving a
soft-margin optimization problem

min
ωl ,bl ,ξi

1

2
�ωl�2 + α

|Tl |∑
τ=1

ξi

s.t. yl(a
gt
τ )(ω�

l φ(Cτ ) + bl) ≥ 1 − ξτ , ξτ ≥ 0, ∀τ (11)

where ξi with i = 1, . . . , |Tl | are the slack variables. We do
this for all frames and keep iterating until all targets are suc-
cessfully tracked. Please find the detailed process of learning
method in Algorithm 1. In Fig. 5, we show an example of
learned SVMs which separate the sample space into three
regions corresponds to s = −1, 0, 1, respectively. Clearly,
the region of s = 1 takes the largest proportion, which means
that a large part of learning Ft or Fc can be avoided to speed
up tracking significantly.

D. Implementation Details

Selective spatial regularization (SSR) is a universal scheme
which helps improve various spatially-regularized CF trackers.
In this paper, we validate SSR by equipping it to three

Algorithm 1: Reinforcement Learning for SSRCF

popular spatially-regularized CF trackers, i.e., SRDCF [18],
CCOT [19], and ECO [20]. We inherit their parameter setup.
Specifically, for SRDCF, we use HoG, gray and color name
as features and solve Eq. (7) and (8) via Gaussian-Seidel
method with 4 iterations. We calculate Wt with μ = 0.1 and
η = 12. To realize scale adaption, we perform correlation on
7 scales with scale step being 1.01. αk is set as exponentially
decaying weights and corresponds to a fixed learning rate
0.025. For CCOT, we use VGG-M as features and solve Eq. (7)
and (8) via the Conjugate Gradient method with 5 iterations.
We generate Wt with μ = 10−4 and η = 10−2 and detect
target on 5 scales with scale step being 1.02. The learning rate
is set as 0.0075. For ECO, we adopt the features of VGG-M
and HoG and learn online via the Conjugate Gradient method
with 5 iterations and the learning rate is 0.025. The parameters
for Wt , i.e., μ and η, are set as 10−4 and 10−2. Note, ECO uses
a sparse updating strategy and updates filters every 5 frames,
which is not suitable for the SSR-based scheme. We thus
remove this strategy and update filters according to the status
changes of the MDP. We denote improved SRDCF, CCOT, and
ECO as SSR-DCF, SSR-CCOT, and SSR-ECO, respectively.

For synthetic video generation, we set Nv = 20 and add
motion blur by randomly selecting kernel size from 5 to 11 and
direction from 0 to 5 degrees.

V. EXPERIMENTAL RESULTS

A. Setup

1) Datasets and Metrics: We evaluate our method and base-
line trackers on OTB-2013 [26], OTB-2015 [27], TC-128 [29],
LaSOT [30], and VOT-2016 dataset [28]. OTB-2015 contains
98 sequences with 100 targets. OTB-2013 is a subset of
OTB-2015 and contains 50 sequences with 51 targets. The
intersection-over-union (IoU) and center location error (CLE)
between tracking results and ground truth bounding boxes
are used to evaluate a tracker quantitatively. By setting
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thresholds for IoU and CLE, we get average success rate
and precision over all frames, respectively. With a range
of thresholds, we finally obtain the success plots of IoU
and precision plots for CLE. The area under curve (AUC)
of success plots and the precision of CLE at 20 pixels
are regarded as the final metrics for each tracker. Besides,
OTB dataset contains 11 subsets according to 11 interfer-
ence attributes, i.e., illumination variation (IV), scale varia-
tion (SV), in-plane rotation (IPR), out-plane rotation (OPR),
deformation (DEF), occlusion (OCC), motion blur (MB), fast
motion (FM), background clutter (BC), out-of-view (OV) and
low resolution (LR) [27].

TC-128 [29] has 128 color sequences and is used to explore
the ability of trackers to encode color information. LaSOT [30]
is a recently proposed large-scale video dataset for single
object tracking and consists of 1400 lone-term sequences.
Here, we report the results on its testing subset that contains
280 sequences with 690K frames. Following the setup of OTB
datasets, TC-128 and LaSOT also adopt the AUC of success
plot and CLE at 20 pixels as final evaluation metrics.

We also take the VOT-2016 [28] as an evaluation dataset
that contains 60 videos. The expected average overlap (EAO)
is regarded as the metric and considers both the accuracy and
robustness of trackers [56].

2) Baseline Trackers: For OTB, TC-128, and LaSOT
datasets, we choose two groups of baseline trackers. The
first one is CF trackers including HCF [16], SRDCF [18],
Staple [17], HDT [57], CCOT [19], ECO [20], CSRDCF [40],
BACF [42] and CFNet [36]. The second group includes
trackers base on other frameworks, such as DLSSVM [58],
SiamFC [59], LMCF [55] and DSiam [14]. Among these
trackers, HCF, CFNet, SiamFC, CCOT, ECO, HDT and DSiam
use deep features. Note, since the source code of LMCF is not
available, we only show its results on the OTB datasets. For
VOT-2016 dataset, we compare our trackers with the five best
trackers, i.e., CCOT, TCNN [60], SSAT [28], MLDF [28] and
Staple, and other five CF trackers, i.e., ECO, HCF, CSRDCF,
BACF and SRDCF.

B. Comparison of Benchmark Datasets

1) OTB Dataset Evaluation Results: We show the evalua-
tion results on OTB-2013 and OTB-2015 in Fig. 6 and Fig. 7.
With our selective spatial regularization (SSR), the improved
spatially-regularized CF trackers, i.e., SSR-DCF, SSR-CCOT,
and SSR-ECO, achieve the highest accuracy among all com-
pared trackers. Specifically, for OTB-2013 results, SSR-DCF
obtains 8.9% relative improvement over SRDCF on both AUC
score and CLE precision at 20 pixels. The relative improve-
ments of SSR-CCOT and SSR-ECO over CCOT and ECO
are smaller than those of SSR-DCF over SRDCF, i.e., 1.9%
and 2.5%, according to the AUC scores, since CCOT and
ECO use deep features that help address interference and
limit the ability of SSR in improving performance. Com-
pared with other state-of-the-art CF trackers, e.g., BACF and
CSRDCF, SSR-ECO gets 9.0% and 21.8% relative improve-
ments according to their AUC scores. In terms of other track-
ing frameworks, e.g., DSiam, LMCF, DLSSVM and SiamFC,

Fig. 6. Comparison results on OTB-2013 [26] and OTB-2015 [27]. The
legend of each tracker shows the AUC score of success plots and precision
at 20 pixels of precision plots.

Fig. 7. Average AUC scores on 11 subsets of OTB-2013 [26] and
OTB-2015 [27].

SSR-DCF using hand-crafted features can still achieve 2.3%,
6.8%, 13.9%, and 14.2% relative improvements on AUC
scores. We also compare SSR-DCF, SRDCF, SSR-CCOT,
CCOT, SSR-ECO, and ECO on the 11 subsets of OTB-2013.
As shown in the left column of Fig. 7, SSR-based methods
outperform their original versions on all 11 subsets and achieve
high accuracy gain on OV, IV, IPR, OPR, DEF, BC and OCC.
SSR-ECO and SSR-CCOT also get larger AUC scores than
ECO and CCOT on all subsets. However, the accuracy gains
are much smaller than SSR-DCF over SRDCF, since deep
features they used help overcome various interference.
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According to the results on OTB-2015 that contains more
challenge sequences than OTB-2013, we observe that accu-
racy gains of SSR-based methods are usually larger than
that on OTB-2013. Specifically, SSR-DCF, SSR-CCOT, and
SSR-ECO obtain 14.6%, 2.4%, and 2.7% relative improve-
ments over SRDCF according to their AUC scores, which are
larger than the gains on OTB-2013. It shows that SSR helps
SRDCF, CCOT, and ECO handle more challenging situations.
Meanwhile, SSR-DCF obtains better relative improvements,
i.e., 6.6%, 11.2% and 19.9%, over DSiam, LMCF, and
DLSSVM on OTB-2015 than those on OTB-2013. Consid-
ering the results on 11 subsets of OTB-2015, we also see that
SSR-DCF, SSR-CCOT, and SSR-ECO outperform SRDCF,
CCOT, and ECO on all subsets.

Besides quantitative analysis, we compare the visualization
results of ten trackers in Fig. 9. In sequences of ‘Box’ and
‘Lemming’, SSR-ECO, SSR-CCOT, and SSR-DCF can handle
the severe occlusion properly and locate targets accurately.
However, state-of-the-art CF trackers, e.g., CSRDCF, BACF,
HDT, CFNet and SRDCF, easily fail to track when the
targets are severely occluded by background. We observe
similar results in ‘Girl2’, ‘Human3’ and ‘Kitesurf’. Partic-
ularly, in sequence ‘Human3’, except SSR-ECO, SSR-DCF
and ECO, all trackers miss the target. Although SSR-CCOT
fails at frame #1617, the target is still within the search
region of SSR-CCOT and can be re-detect at following frames.
In sequence ‘Singer2’, the singer is within background clutter
introduced by audios and illumination variation caused by the
screen. Only SSR-ECO, SSR-CCOT, SSR-DCF and BACF can
track the singer accurately and adapt its scale variation.

2) TC-128 Dataset Evaluation Results: We show the eval-
uation results on TC-128 in the first row of Fig. 8. Clearly,
with our SSR, the AUC scores of SRDCF, CCOT, and ECO
achieve 5.8%, 1.6%, and 1.7% relative improvements. For
CLE precision results, SSR-DCF, SSR-CCOT, and SSR-ECO
achieve 5.0%, 2.1%, and 2.7% relative improvements over
their original versions, respectively. More importantly, our
three trackers outperform all compared methods according to
the AUC scores and it demonstrates the effectiveness of our
SSR for handling color sequences.

3) LaSOT Dataset Evaluation Results: We further validate
the proposed method on the LaSOT dataset. Note, since
LaSOT is large-scale and CCOT is too slow to be evalu-
ated in a limited time, we only report results of SSR-DCF
and SSR-ECO. As shown in the second row of Fig. 8,
the SSR improves both SRDCF and ECO with 11.0% and
4.0% relative improvements on AUC scores, respectively. In
terms of the CLE precision, the relative improvements are
6.6% and 13.7%, which demonstrates the proposed SSR not
only improves spatially-regularized CF trackers on short-term
sequences, i.e., OTB and TC-128 videos but also helps handle
challenges, e.g., long-term occlusion, etc., from long-term
sequences. Compared with state-of-the-art trackers, SSR-ECO
achieves the largest AUC score and SSR-DCF also gets better
results than recent CF trackers, e.g., BACF, CSRDCF, HDT,
Staple, and HCF, while being slightly worse than CFNet.
SSR-ECO gets the second best result according to the CLE
precision and outperforms CF trackers using deep features,

Fig. 8. Comparison results on TC-128 [29] and LaSOT-2015 [30]. The
legend of each tracker shows the AUC score of success plot and precision at
20 pixels of precision plot.

i.e., CFNet, HDT, and HCF, with 23.0%, 34.8%, and 31.6%
relative improvement, respectively.

4) VOT-2016 Dataset Evaluation Results: As shown
in Table I, we see that SSR-ECO and SSR-CCOT get much
higher EAO than their original versions and are the best two
trackers among all compared methods. Although having much
lower EAO than SSR-ECO, SSR-DCF also has larger EAO and
is more robust than SRDCF. In terms of robustness, SSR-ECO,
SSR-CCOT, and SSR-DCF obtain better results than ECO,
CCOT and SRDCF, respectively. Moreover, SSR-ECO and
SSR-CCOT have the best robustness among all methods.

C. Detailed Analysis

1) Ablation Study: To analyze the contribution of different
weight maps for accurate tracking, we remove Wt , Wc and Wn
from the status set S of our MDP, respectively, and get three
variants of SSR-DCF, i.e., SSR-DCF-noWt, SSR-DCF-noWc
and SSR-DCF-noWn. For example, SSR-DCF-noWc only
converts between Wt and Wn during online tracking with the
same SVMs used by SSR-DCF. For a comprehensive compari-
son, we construct three baseline trackers base on SRDCF with
the three weight maps, i.e., Wt , Wc, and Wn, respectively, and
denote them as SRDCF-Wt , SRDCF-Wc, and SRDCF-Wn.
Specifically, SRDCF-Wt is the SRDCF in [18]. SRDCF-Wn
uses target-regularized filters learned at the first frame to
track targets without online filter updating. SRDCF-Wc
locates the target through context-regularized filters calcu-
lated by Eq. (8) with the sample cropped from the previous
frame.

We evaluate SSR-DCF, its three variants, and the three
baseline trackers on OTB-2013 and OTB-2015, respectively.
As shown in Fig. 10, removing any status of S leads
to significant performance reduction of SSR-DCF. Specif-
ically, SSR-DCF shows 27.6%, 8.1% and 23.3% relative
improvement over SSR-DCF-noWn, SSR-DCF-noWc and
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Fig. 9. Visualization results of SSR-ECO, ECO, SSR-CCOT, CCOT, SSR-DCF, SRDCF, and other four CF trackers. The first six sequences show the
advantages of SSR-based CF trackers in handling occlusion and background clutter. The last two cases show the limitation of SSR-based CF trackers in
handling fast motion with huge deformation.

TABLE I

PERFORMANCE EVALUATION ON VOT-2016 DATASET. IN THIS DATASET, WE COMPARE OUR SSR-ECO, SSR-CCOT, AND SSR-DCF
WITH THE ECO, CCOT, SRDCF AND OTHER 7 STATE-OF-THE-ART TRACKERS. THE BEST THREE RESULTS ARE

MARKED IN RED, GREEN AND BLUE BOLD FONTS, RESPECTIVELY

Fig. 10. Ablation study by comparing SSR-DCF and its three variants with
SRDCF on OTB-2013 and OTB-2015, respectively. The speed, AUC scores
and CLE precision are shown at legends.

SSR-DCF-noWt, respectively, according to the AUC scores on
OTB-2013. We observe similar results on OTB-2015. Hence,
all three weight maps help get much better tracking accuracy.

Particularly, SSR-DCF-noWn obtains the worst results and
runs very slowly on OTB-2013, since the status Wc is fre-
quently activated even if the target-regularized filters are dis-
criminative enough to get good results. SSR-DCF-noWc that
only converts between Wt and Wn achieves higher accuracy
and run 4.9 times faster than SRDCF-Wt , which demonstrates
that skipping unnecessary or erroneous updating helps improve
tracking accuracy and shorten running time.

According to the results of three baseline trackers,
we see that: 1) Without any target appearance information,
SRDCF-Wc still gets 37.3% CLE precision, which shows that
context-regularized filters may locate a target without using
the target appearance information. That is why the SSR-based
trackers selectively utilizing context information can address
severe occlusion or background clutter. We further discuss the
advantage of SRDCF-Wc in Section V-C.2. 2) Without online
updating, SRDCF-Wn only reduce relative AUC by 6% w.r.t.
SRDCF-Wt while running near 8 times faster. It shows the
possibility to accelerate the SRDCF-Wt without harming its
accuracy by doing sparse filter updating.

We further compare the 7 trackers on 11 subsets of
OTB-2013 and OTB-2015, respectively. As shown in the sec-
ond column of Fig. 7, SSR-DCF outperforms its three variants
on all subsets, which demonstrates that all three weight maps
help track target accurately under various interferences.
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Fig. 11. Validation of context-driven CF tracking that only uses Wc to learn filters during online tracking and is denoted as SRDCF-Wc. We compare it with
target-driven CF tracking, i.e., SRDCF-Wt , that only uses Wt to learn filters to track a target. Except the first frames, all frames of four testing sequences
are added random occlusion. The intersection-over-union (IoU) of each frame is also shown. In sequences of ‘Biker’ and ‘Boy’, their cameras are fixed while
targets keep moving. In sequence ‘Blurowl’, its target holds its position while the camera is moving. In sequence ‘Skating1’, both target and camera are
moving.

2) Validation of Context-Driven CF Tracking: In this sub-
section, we validate and discuss the effectiveness and advan-
tages of using context-regularized filters to track the target.
We construct two trackers, i.e., SRDCF-Wc and SRDCF-Wt
in Section V-C.1, by using context-driven and target-driven
weight maps to learn filters and track the target at each
frame, respectively. To evaluate their ability of addressing
severe occlusion, we add random occlusion to a target in all
frames except the first one of a testing sequence and use
the two trackers to track the target, respectively. As shown
in Fig. 11, SRDCF-Wc outperforms SRDCF-Wt on all four
sequences. Due to the severe occlusion, SRDCF-Wt relying
on the target appearance easily fails tracking and regards
backgrounds as targets. However, SRDCF-Wc utilizing the
context information can still locate the target or even detect the
scale variation. Specifically, in sequences ‘Biker’ and ‘Boy’,
the cameras are fixed while the two men keep moving. Since
other parts of the two men become the context of SRDCF-
Wc and have the same motion with targets, i.e., the heads,
SRDCF-Wc can keep tracking the target while estimating
the scale variation. Similarly, in the sequence ‘BlurOwl’,
since the camera is moving while all objects in the scene
are fixed, the context has the same motion with the owl
and helps SRDCF-Wc track target accurately. In ‘Skating1’,
although both camera and the target keep moving, bounding
boxes generated by SRDCF-Wc are always not far away
from the ground truth position, which guarantees the target
is included in search region during tracking, thus would help
target-regularized filters re-detect the target when occlusion is
removed.

3) Validation of Selective Spatial Regularization: In Fig. 12,
we show two cases of s transition during online tracking,
where s can be -1, 0 or 1, which corresponds to use Wc,
Wn or Wt to regularize filters. In both sequences of Fig. 12,

the weight map keeps Wn, i.e., s = 0, at the most of time,
which means that target-regularized filters are rarely updated
during tracking. Hence, SSR-DCF runs about 5 times faster
than SRDCF and obtains much higher accuracy by avoiding
erroneous updating of target-regularized filters, as discussed
in Section V-C.1. When target appearance changes during
tracking, the weight map is set as Wt with s = 1, which
means to update target-regularized filters by the detection
result to adapt target appearance variation. For example, at the
frame ‘#498’ of the first sequence and frame ‘#876’ of
the second sequence, the two targets slightly change due
to view changing and motion blur, respectively. Our MDP
converts the weight map to Wt immediately to update the
target-regularized filters. When a target is occluded or sur-
rounded by similar objects, the MDP sets weight map as
Wc to learn context-regularized filters to track the target. For
example, at frame ‘#532’ and ‘#680’ in the first sequence
and frame ‘#728’ in the second sequence, the two targets are
still accurately located even though they are fully occluded
by trees and a glass bottle, respectively. Note, before or
after the period of Wc, the weight map is converted to Wt,
since partial occlusion usually happens before and after severe
occlusion and is regarded as target appearance variation by the
MDP. This may lead to error updating of target-regularized
filters. However, the problem has little effect on the over-
all tracking accuracy due to the low frequency of such
situation.

4) Analysis of Handling Long-Term Occlusion and Out-of-
View: In this subsection, we analyze the ability of our SSR
to handle long-term occlusion or out-of-view by comparing
SRDCF and SSR-DCF on the VOT-2018LT dataset [41], [61].
VOT-2018LT contains 35 sequences with 14687 frames and
each sequence has average 12 long-term target disappear-
ances each of which lasting on average 40 frames. Moreover,



3010 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 12. Validation of selective spatial regularization for short-term and long-term occlusion and out-of-view. With the proposed MDP, the weight map W
converts between three statuses w.r.t. the value of selector s. The white arrows show the ground truth of target locations. Red, Green and Blue bounding boxes
correspond to detection results generated by the filters regularized by Wc, Wn and Wt , respectively. At the bottom of the third case, we visualize the status
of the target with ‘NORM’, ‘OCC’, and ‘OV’ representing that the target is within the visual field, occluded, and out-of-view, respectively.

TABLE II

COMPARISON BETWEEN SRDCF AND SSR-DCF ON VOT-2018LT AND

ITS THREE SUBSETS, I.E., FULL OCCLUSION (FULL OCC.), PARTIAL

OCCLUSION (PARTIAL OCC.), AND OUT-OF-VIEW (OV). WE USE
F-SCORE DEFINED IN [61] AS THE EVALUATION METRIC

the sequences are assigned with ten visual attributes corre-
sponding to ten subsets and we focus on the full occlusion,
partial occlusion, and out-of-view subsets. We use F-score that
considers both tracking precision and recall and is defined
in [61] as the evaluation metric. As shown in Table II,
according to the F-score, SSR-DCF outperforms SRDCF with
13.4%, 31.0%, 13.7%, and 15.9% relative improvements on
the whole dataset and the three subsets, i.e., full occlusion,
partial occlusion, and out-of-view, respectively, and it demon-

strates SSR not only helps SRDCF address long-term full or
partial occlusion but also out-of-view. This is because the SSR
can convert the regularization weight map to Wc or Wn when
occlusion or out-of-view happens, and avoids the corruption of
target-regularized filters, which enables the tracker to re-detect
the target when it appears again. We show an intuitive result
from VOT-2018LT in the third row of Fig. 12. Long term
occlusion and out-of-view happen between frame 360 and
frame 660. During this period, the weight map mainly keeps
Wc and Wn and the target is re-detected at the 700th frame.

5) Disadvantage of Using Context-Regularized Filters:
Using context to address occlusion and background clutter
is base on the assumption that the target and its context
have similar motion temporarily. However, this assumption
tends to fail when the target has huge deformation while
running fast. Under this situation, the context-regularized
filters would be triggered and fail to track, since the context
between two neighboring frames would be different due to
the fast motion. We show two examples, i.e., ‘Jump’ and
‘MotorRolling’ whose targets move very fast with huge shape
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TABLE III

TIME COST COMPARISON AMONG SRDCF, SSR-DCF, CCOT,
SSR-CCOT, ECO AND SSR-ECO ON OTB-2015

deformation, in the last row of Fig. 9. Particularly, in the case
of ‘MotorRolling’, all SSR-based trackers miss the motorcycle.
One possible solution for this problem is to equip the
SSR-based trackers with an effective motion model that helps
avoid error triggering of context-regularized filters.

6) Time-Consuming Analysis: In Table III, we report the
average speed, average online time cost per frame, and average
time cost at the first frame of SRDCF, SSR-DCF, CCOT,
SSR-CCOT, ECO and SSR-ECO on OTB-2015. In terms of
the FPS, SSR-DCF and SSR-CCOT run 5.4 and 3.6 times
faster than SRDCF and CCOT, respectively. SSR-ECO is
slightly faster than ECO, since ECO updates filters every
5 frames, which significantly speeds up itself. As a result,
our SSR being a universal component not only helps
spatially-regularized CF trackers improve tracking accuracy
but also increase their online speed significantly. In terms
of the cost at the first frame, we consider three values,
the average cost of synthetic video generation (Syn. Gen.),
reinforcement training for MDP (RL Train.), and initialization
of target-regularized filters (Init.). For SSR-based trackers,
the Init. process is included in the RL Train. stage while
spatially-regularized CF trackers do not contain the Syn.
Gen. and RL Train. processes. According to the results
in Table III, SSR-DCF, SSR-CCOT, and SSR-ECO take 6.1,
2.5, and 4.5 times more cost than SRDCF, CCOT, and ECO
at the first frame due to the extra time for Syn. Gen. and
RL Train. Although SSR-based trackers are inefficient at
the first frame, the total cost will be reduced when we
handle long-term videos, since SSR-based trackers always
have a lower time cost during the online process than the
original spatially-regularized CF trackers. More importantly,
SSR-based trackers significantly outperform the original track-
ers on long-term object tracking according to the results on
LaSOT and VOT2018LT as shown in Fig. 8 and Table. II.
Note, SRDCF, SSR-DCF, CCOT, and SSR-CCOT are eval-
uated on the same platform with the CPU Intel i7-3770
and RAM 16 GB while ECO and SSRECO run on the
NVIDIA RTX2080.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed the selective spatial regular-
ization (SSR) for correlation filter (CF)-tracking scheme that
selectively learns the target-context-regularized filters and can
reliably track a target even if it is severely occluded or within

cluttered background. Specifically, we proposed an extended
objective function for the CF-tracking scheme to generate
target-context-regularized filters by selectively using target-
context-driven weight maps in the online CF optimization.
We then constructed a Markov Decision Process (MDP)
whose state policy set decides which weight map should be
selected during the online tracking process. We effectively
learned the state policy set of the MDP on a synthetic video
sequence that is generated with the ground truth target in the
first frame via reinforcement learning. Besides, by adding a
special state in the MDP representing not updating filters,
we also learned when to skip unnecessary or erroneous filter
updating, thus to accelerate the online tracking speed without
harming the accuracy. We have shown that SSR is a universal
component for the CF-tracking scheme and improved three
popular spatially-regularized CF trackers, i.e., SRDCF [18],
CCOT [19], and ECO [20], with much faster online speed.
We validated the effectiveness and superiority of our track-
ers over various state-of-the-art competitors on five bench-
mark datasets, OTB-2013, OTB-2015, LaSOT, TC-128, and
VOT-2016.

For the MDP of our SSR, the desired implementation is
to adopt the deep reinforcement learning by offline training
a Q-net as done in early-stopping tracker (EAST) [62]. Nev-
ertheless, compared with EAST, the SSR has two challenges
with deep reinforcement learning: 1) An effective large-scale
training dataset for SSR is not easily obtained. The objective
of EAST is to adopt an MDP that makes decisions across
feature layers to predict a tight bounding box wrapping the
target with few feature layers at each frame. Any annotated
image pairs can be added to the training set to offline train the
Q-net. In contrast, our objective is to use the MDP to make
decisions across frames and decide when to skip filter updating
or use context-regularized filters to address severe occlusion or
background clutter. However, severe situation, e.g., occlusion,
rarely happens in a real-world video dataset, which limits
the effectiveness of training sequences. 2) To handle all test
videos with one universal MDP, deep reinforcement learning
for our SSR needs a novel Q-net that can generate robust
decisions and tolerate spatial-temporal variations of different
targets and backgrounds. The Q-net used by EAST takes the
response map of one frame as inputs and does not consider
the spatial-temporal variation across different videos. Hence,
it cannot be used to realize a universal MDP for SSR directly
and should be carefully designed to let the MDP make robust
decisions across videos. In summary, this work opens a door
to improve the CF trackers and more recent advanced deep
learning techniques could be used to make the SSR more
powerful in the future by overcoming its specific challenges.
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