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Fast Learning of Spatially Regularized and Content
Aware Correlation Filter for Visual Tracking

Ruize Han , Wei Feng , Member, IEEE, and Song Wang , Senior Member, IEEE

Abstract— With a good balance between accuracy and speed,
correlation filter (CF) has become a popular and dominant
visual object tracking scheme. It implicitly extends the training
samples by circular shifts of a given target patch, which serve as
negative samples for fast online learning of the filters. Since all
these shifted patches are not real negative samples of the target,
CF tracking scheme suffers from the annoying boundary effects
that can greatly harm the tracking performance, especially under
challenging situations, like occlusion and fast temporal variation.
Spatial regularization is known as a potent way to alleviate
such boundary effects, but with the cost of highly increased
time complexity, caused by complex optimization imported
by spatial regularization. In this paper, we propose a new
fast learning approach to content-aware spatial regularization,
namely weighted sample based CF tracking (WSCF). In WSCF,
specifically, we present a simple yet effective energy function that
implicitly weighs different training samples by spatial deviations.
With the energy function, the learning of correlation filters is
composed of two subproblems with closed-form solution and can
be efficiently solved in an alternate way. We further develop
a content-aware updating strategy to dynamically refine the
weight distribution to well adapt to the temporal variations
of the target and background. Finally, the proposed WSCF is
used to enhance two state-of-the-art CF trackers to significantly
boost their tracking accuracy, with little sacrifice on the tracking
speed. Extensive experiments on five benchmarks validate the
effectiveness of the proposed approach.

Index Terms— Object tracking, correlation filter, boundary
effects, fast spatial regularization, temporal variations.

I. INTRODUCTION

V ISUAL object tracking is a classical problem and plays
an important role in computer vision, with many appli-

cations in practice [1]–[3]. In visual object tracking, fast
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learning an effective appearance model of the target is crucial
for tracking accuracy and robustness [4], [5]. Many machine
learning methods, e.g., support vector machines (SVM)
[6], [7], subspace learning [8], online multi-instance boost-
ing [9], sparse and compressive reconstruction [5], [10],
correlation filter (CF) [11], [12], and convolutional neural
network (CNN) [13], [14], have been developed to this
end. Among all of them, correlation filter (CF) based track-
ers have shown great advantages due to the balance of
accuracy and speed [15]. Specifically, the popularity of CF
tracking scheme mainly comes from two aspects: 1) the
circular convolution operation in CF effectively implic-
itly generates plenty of simulating negative samples that
enables fast learning of more discriminative correlation fil-
ters; 2) the Fast Fourier Transform (FFT) significantly accel-
erates the computation and highly improves the efficiency
of algorithm. As a result, some correlation filter (CF)
based trackers [11] can run over 600 fps with a single
CPU and generate quite promising tracking accuracy as
well.

Despite the above advantages, the circularly shifted patches
contain unwanted circular boundary effects [16] and are not
real negative samples of the target. Such boundary effects can
severely harm the performance of the CF tracking scheme,
especially under challenging situations, such as occlusion and
fast temporal variation. Recently, two categories of methods
are proposed to alleviate the annoying boundary effects for
CF tracking scheme. The first category includes SRDCF [17]
and CSR-DCF [18]. They extend the region of training patch
and introduce a spatial regularization (SR) map to adapt the
filter to learn from the target region while suppress the biased
background region. Theoretically, such methods are equiva-
lent to assigning different weights to the training samples,
i.e., the samples generated by strict circular shifting will get
the lower weights. Spatial regularization [17], [18] has been
shown to be very effective to improve both the accuracy and
robustness of CF based trackers. However, it imports a spatial
regularization term that leads to complex optimization to the
learning of filters, thus harms the efficiency foundation of CF
tracking scheme and highly increases the time complexity.
The second category of CF based trackers tackling boundary
effects includes CFLB [16] and BACF [19], which generate
more realistic negative training samples extracted directly from
the background. The limitation of such methods is that all
the positive and negative training samples are given equal
weights in the learning of filters, which is not good enough for
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Fig. 1. Top: comparative tracking results on a video sequence using the
baseline trackers Staple and BACF, and their spatially-regularized version
WSCFSt and WSCFBA enhanced by the proposed WSCF approach. Bottom:
intersection-over-union (IoU) curve between the predicted and ground truth
bounding boxes of the target tracked by the four trackers..

the tracking accuracy and cannot fully suppress the boundary
effects either.

In this paper, we propose a new fast content-aware
spatial-temporal regularization approach to the CF tracking
scheme, namely weighted sample based CF tracking (WSCF).
In WSCF, we assign different content-related weights to the
implicit circular shifting generated training samples, while
still preserving the efficiency of filter learning. Specifically,
we propose a simple yet effective energy function, with the
energy function, we can fast learn the correlation filters in
each frame by a closed form solution. We further formulate
the dynamic updating of such content-aware weight map as
a constrained quadratic optimization problem. This enable
our approach to well adapt to the temporal variations of
the target and background. Since our WSCF provides a
general way to alleviate boundary effects for the whole CF
tracking scheme, it is applicable to many CF based trackers.
In our experiments, we equip two state-of-the-art CF trackers
with the capability of spatial regularization and significantly
boost their tracking accuracy, without highly decreasing their
tracking speed. Extensive experiments on five benchmarks
validate the effectiveness of the proposed WSCF approach.
As shown in Fig. 1, the enhanced WSCFSt and WSCFBA
trackers by our approach clearly outperforms their respective
baselines, i.e., Staple and BACF. Note, compared to the
spatial regularization based trackers, e.g., SRDCF [17] and
CSR-DCF [18], WSCFSt and WSCFBA also achieve better
accuracy and higher speed. Compared to the real-sample based
tracker CFLB [16], the proposed approach outperforms with
a large margin. Moreover, the proposed WSCF approach can
enhance BACF [19] to further improve its tracking accuracy.

Our major contributions are three-fold.

• A simple yet effective bound term is introduced into the
CF formulation to alleviate the boundary effects and the
new energy function can be optimized in closed form.

• A dynamic content-aware updating model is proposed to
adjust the weight distribution of the samples to well adapt
to the temporal variations, which can be solved by a fast
ALM based algorithm.

• Experimental results on five benchmarks, i.e., OTB-2013,
OTB-2015, VOT-2018, TC-128 and LaSOT validate that
the proposed approach obviously improves the tracking
accuracy of CF based trackers, while maintaining their
real-time running speed.

The rest of this paper is organized as follows. Section II
summarizes the related works. Our approach is elaborated in
Section III. Section IV extensively evaluates and compares
the proposed WSCF approach and state-of-the-art competitors.
Finally, we conclude in Section V.

II. RELATED WORK

A. Correlation Filter (CF) Based Tracking

Bolme et al. proposed the tracker MOSSE [11], which
inaugurated the CF based tracking framework. CF framework
shows two main advantage in handling tracking problem,
i.e., the circular convolution operation extends the training
samples sufficiently and the FFT operation decreases the
computational complexity significantly. Due to the good trade
off between accuracy and speed, CF tracking was developed
quickly and has shown continuous performance improvement
on benchmarks in recent years [12], [20]–[29]. Two typical
strategies have been used to obtain better performance in
CF tracking – integrating more effective features and using
a more complete approach in filter learning. In the first
strategy, multi-channel feature maps are integrated to CF
tracking [12], [23]. Henriques et al. [12] proposed a CF tracker
with multi-channel Histogram of Oriented Gradient (HOG)
features, which can improve the tracking accuracy while
maintaining a high running speed. Danelljan et al. applied
multi-dimensional color attributes in DSST [23]. Li and
Zhu further proposed SAMF tracker [24] using the feature
combination for CF tracking. Recently, deep CNN based
features have been applied to CF tracking [25], [27], which
further improve the tracking performance but taking more
computation time. In the second strategy, many conceptual
improvements for filter learning in CF tracking are presented,
e.g., non-linear kernelized correlation filter (KCF) used in [12],
accurate scale estimation used in DSST [21], and color sta-
tistics integration proposed in Staple [20]. DRT [30] proposes
a novel CF-based optimization problem to jointly model the
discrimination and reliability information. Sun et al. [31]
integrated ROI (region-of-interest) based pooling method into
CF tracking and proposed a novel ROI pooled correlation fil-
ter (RPCF) algorithm for robust tracking. Recently, CFNet [32]
models the CF tracking into an end-to-end framework by
interpreting the CF learner as a differentiable layer in a deep
neural network. Wang et al. [33] developed a new unsuper-
vised learning method for CF-based deep tracking. Visual
object tracking especially CF tracking has many application
scenarios [34]. For example, Shao et al. employed the velocity
feature [35], and two complementary features, i.e., the optical
flow and the histogram of oriented gradient [36], to boost
the CF tracking in satellite videos. Although these methods
made much progress in CF tracking over the initial MOSSE,
the boundary effect problem in CF tracking is still unsolved
in these trackers.

B. Spatial Regularization for CF Tracking

One issue in CF tracking is the unwanted boundary effects,
which are resulted from the unreal training samples generated
by circular convolution. Several popular methods have been
proposed to address the boundary effects by considering
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spatial constraints. In [16] and [19], CF is learned from more
real training examples by enlarging the region of sample
collection. Galoogahi et al. [16] proposed a CF tracker with
limited boundary (CFLB) to reduce the boundary effects
in CF tracking. In [19], the background-aware correlation
filter (BACF) based tracking is developed to learn CF from
real negative training samples extracted from the background.
SRDCF [17] adopts a spatial regularization (SR) component
to penalize CF values. The spatial regularization punishes
the unreal training samples by assigning different weights to
different samples. Based on SRDCF, Danelljan et al. [37]
introduced a novel formulation for learning a convolution
operator in the continuous spatial domain, which was further
enhanced to tackle the problems of computational complexity
and over-fitting simultaneously in ECO [38]. Moreover, based
on [38], UPDT [39] further unveils the power of deep features
for CF based tracking. Similarly, Lukezic et al. [18] proposed
discriminative correlation filter with channel and spatial reli-
ability (CSR-DCF) using the spatial regularization map to
constrain the filter learned from the object region. Besides,
CACF [40] allows the explicit incorporation of global context
within CF trackers. BSCF [41] introduces spatial constraints
in CF by suppressing the background region of the target in
filter learning.

C. Spatial-Temporal Regularization for CF Tracking

An important factor in tracking task is to consider the
temporal variation in tracking process, e.g., the size, appear-
ance and shape change of the target over time. Several
spatial-temporal regularization based methods were proposed
to alleviate the incapability of CF tracking models in handling
changeable scenes. Most of these methods are based on the
spatial regularization proposed in SRDCF [17]. Specifically,
a unified formulation for CF based tracking is proposed
in [42] to dynamically manage the training set by estimat-
ing the quality of the samples. STRCF [43] introduces the
temporal regularization to SRDCF to provide a more robust
appearance model than the baseline in the case of large
appearance variations. Similarly, STRSCF [44] integrates the
spatial prior directly to the image and a temporal regularization
term as in STRCF to improve the tracking performances.
Zhang et al. [45] presented a part-based tracking framework
by exploiting multiple SRDCFs. FOSR [46] incorporates an
object-adaptive spatial regularization model for CF tracking.
More recently, CRSRCF [47] integrates temporal content
information of the target into the spatial constraint of [17]
and DSAR-CF [48] introduces a dynamic saliency-aware
spatial constraint into CF tracking. Similarly, ASRCF [49]
incorporates an adaptive spatially regularized CF model to
optimize the filter while adaptively tuning the spatial regu-
larization weights. In addition, SSRCF [50] proposes a selec-
tive spatial regularization based on SRDCF. Besides above
trackers extended from SRDCF, Hu et al. [51] proposed a
spatial-aware temporal aggregation network to construct more
efficient features for CF tracking. Guo et al. [52] derived a
dynamic transformations to handle the variation of both the
target and background.

The proposed WSCF is totally different from the above
works in that we introduce the weighting constraint bound
term into CF formulation to alleviate the boundary effects
by assigning different weights to the training samples. Our
formulation does not involve the elementwise multiplication
operation on the correlation filter, and avoids the computa-
tional inefficiency of classical SR. This way, the filter can be
solved by the closed-form solution, which almost does not
increase the computational complexity.

III. THE PROPOSED METHOD

A. Background and Motivation

1) CF Tracking and Boundary Effects: There are two pri-
mary stages in CF tracking framework, i.e., detection stage
and filter learning stage. In the detection stage, an online
updated correlation filter f ∈ R

N×1 is applied to detect the
target location in a search region frame by frame (z ∈ R

N×1

represents the feature vector extracted from the search region),
and response vector c ∈ R

N×1 can be computed by

c = z � f, (1)

where � denotes circular convolution, and the target location
is on the peak of c. In filter learning stage, correlation filter f
can be updated by minimizing

ECF(f) = ‖x � f − y‖2 + λ‖f‖2, (2)

where x denotes the vectorized feature map extracted from
the training samples, and y ∈ R

N×1 is the desired output
(i.e., the Gaussian-shaped ground truth), λ ≥ 0 is a control
factor.1 Optimizing Eq. (2) w.r.t. f can be efficiently solved
in frequency domain where ‘�’ becomes elementwise multi-
plication, which leads to a super real-time algorithm [11]. As
discussed in [16], the circular convolution in Eq. (2) assumes
the cyclic shifts of x, which causes the periodic repetitions on
boundary positions. The cyclic shifts of base sample generate
the unfaithful training samples as shown in Fig. 2 and harm
the discriminative power of learned filters. This is called the
boundary effects that inevitably degrades the CF tracking
performance.

2) Spatial Regularization (SR) for Boundary Effects: Spatial
regularization (SR) [17] is a classical method to alleviate the
boundary effects in CF framework. We then revisit SR based
tracker SRDCF [17], which introduces a spatial weight map
to penalize filter values outside the object boundaries by the
following energy function,

ESR(f) = ‖x � f − y‖2 + λ‖w̃ � f‖2, (3)

where � denotes the elementwise multiplication operation,
and w̃ is the vectorized spatial variant weight map. When we
set f ′ = w̃ � f , Eq. (3) can be rewritten as

E′
SR(f ′) =

∥∥∥∥ f ′

w̃
� x − y

∥∥∥∥
2

+ λ
∥∥f ′∥∥2

, (4)

1For simplicity, what we describe above is for one-channel feature map.
In practice, it can be extended to multiple channel feature maps by using
multiple feature-extraction algorithms [53].
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Fig. 2. An example frame from the video soccer (left) and the tracking results on this video has been shown in Fig. 1. An illustration of the training samples
in CF framework and the weight distribution for different training samples using the proposed WSCF and original CF framework (middle). The response
maps generated by these two types of methods (right)..

where f ′
w̃ � x can be written as Cdiag( 1

w̃ )f′. Each row of C
denotes a vector of circularly shifted x, i.e., a training sample
and diag(·) is the diagonalization function for a vector. Then
Cdiag( 1

w̃ )f′ can be regarded as assigning the weights 1
w̃ to

the training samples. As discussed in [48], in the original CF
energy function of Eq. (2), the second term can be taken as
λ||1 � f ||, which means both the real sample and synthetic
samples are of equal importance for filter learning. However,
those synthetic samples shifted to be far from the target
center cannot represent the real scene. Hence, the synthetic
samples may introduce disturbance in filter learning. SRDCF
generates w̃ according to the shifting distance of training
samples, i.e., a synthetic sample with large shifting distance
will be assigned a small weight. This effectively removes the
influence of useless synthetic samples, thus learns much more
discriminative filters. From this point, the spatial regularization
can be regarded as assigning different weights to the training
samples to deal with the boundary effects.

3) Limitation of SR: We transform Eq. (3) into Fourier
domain and get

ESR(f̂) =
∥∥∥x̂ � f̂ − ŷ

∥∥∥2 + λ
∥∥∥ ˆ̃w � f̂

∥∥∥2
, (5)

where ·̂ denotes the corresponding variable in Fourier domain.
The second terms of Eq. (3) and Eq. (5) are the SR terms. We
can see that the SR weight map w̃ imports circular convolution
operation into the second term of Eq. (5). This breaks the
simplicity of elementwise multiplication in Fourier domain of
the first term in Eq. (5), which is the efficiency foundation of
CF framework. As a result, we have to use the Gauss-Seidel
(GS) [17] or conjugate gradient (CG) [37], [38] algorithms to
iteratively solve the corresponding linear system for learning
f, whose complexity is O(N3 D3) and O(N2 D), respectively,
where N and D denote the size and dimension of the feature
map x. Therefore, although the SR improves the accuracy of
CF trackers, the use of SR term also significantly decelerates
the algorithm speed, e.g., SRDCF runs at about 4 fps with
HOG features. This way, we aim to construct a new spatial
regularization alike method to alleviate the boundary effects
without breaking the elementwise multiplication in Fourier
domain for learning the filters.

B. Weighted Samples for Correlation Filter Learning

In this paper, we propose a new spatially variant weighted
sample based CF model. First, the CF energy function of
Eq. (2) can be rewritten as

Ew(f, y∗)=∥∥x � f − y∗∥∥2+‖f‖2+λy

∥∥∥w � (y−y∗)2
∥∥∥

1
, (6)

where x, f and y have the same meanings as in Eq. (2),
λy ≥ 0 is a control factor and ‖·‖1 denotes the vector
L1-norm. The notation w ∈ R

N×1 denotes the vectorized
weight distribution map, y∗ ∈ R

N×1 represents the computed
result of the filter applied to the training samples, i.e., x � f .
In original CF function as Eq. (2), it aims to minimize the
difference between the desired output y and computed result
y∗, by treating all the training samples equally. As shown
in Fig. 2, we introduce the spatially variant weight distribution
w in Eq. (6) by assigning different weights to the training
samples (the samples generated by seriously circular shift
will get the lower weights) to alleviate the boundary effects
problem of CF as in [17]. But differently we do not implement
the elementwise operation of w with f , which avoids the
inefficient computation in [17].

The energy function Eq. (6) involves two variables f and y∗.
With respect to y∗, the gradient of Ew can be obtained
by

∂Ew(y∗)
∂y∗ = 2(f � x − y∗) + 2λy(w � (y − y∗)). (7)

By setting ∂Ew(y∗)
∂y∗ = 0, we get the closed-form solution

y∗ = (1 + λyw)−1 · (x � f + λyw � y). (8)

With respect to f , the form of Eq. (6) is the same as Eq. (2),
while the only difference is the replacement of y with y∗
and therefore, the filter f can be quickly solved as in original
CF framework [11]. In the proposed spatially variant weights
based CF tracking, we solve y∗ and f alternately. Both y∗ and
f can be solved by the closed-form solution, which makes
the algorithm more efficient. This way, the proposed method
handles the boundary effects in CF by assigning different
weights to the training samples and weakens the impact of
unfaithful synthetic samples, which can achieve the similar
effectiveness with spatial regularization (SR) [17] as discussed
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in Section III-A. However, different from SR, the proposed
formulation does not involve the elementwise multiplication
operation on the filter f as in Eq. (3), which breaks the
Fourier-domain efficient solution of CF tracking.

C. Dynamic Updating of Weight Distribution

We introduced the weight distribution w in Eq. (6). We
can see that w is fixed in the whole tracking process after
initialization. However, in real-world tracking tasks, object
shape is usually irregular and may change frequently in the
tracking process. From this perspective, it is unconscionable
to define a constant weight distribution using only the spatial
distance to the map center and fix it over time. Similar studies
can be found in recent works [48], [49], which integrate
the object-adaptive/temporal-dynamic constraint to improve
the fixed SR map in [17]. In the following, we consider
the object-related and temporal-varying information into the
weight distribution to obtain more reliable filters and overcome
the limitation of the fixed regularization weight distribution w.
Accordingly, we attempt to improve the weight distribution
from fixed w into dynamic d.

1) Problem Formulation: Based on Eq. (6), we introduce
the dynamic weight distribution d ∈ R

N×1 and get

Ed(f, y∗, d) = ∥∥x � f − y∗∥∥2 + ‖f‖2

+λy

∥∥∥d � (y − y∗)2
∥∥∥

1
+ λw

∥∥∥∥d2

w

∥∥∥∥
1

s.t.

{
dk ≥ 0∑

k dk = μ
, k = 1, 2 . . . N. (9)

where w = {wk |k = 1 . . . N}, d = {dk|k = 1 . . . N}. Different
from the energy function in Eq. (6), the new formulation
Eq. (9) is a function of three variables, i.e., the correlation
filter f, computed result y∗, and the weight distribution d.
As a result, the weight map d is no longer pre-set constants
as w in Eq. (6). The two constraints ensure that the weights
in d are non-negative and summed up to μ. The last term
in Eq. (9) is the regularization term on the sample weights
in d. This regularization is used to constrain the similarity
between d and w, which is controlled by the flexibility
parameter λw > 0 and the prior sample weights wk > 0,
satisfying

∑
k dk = ∑

k wk = μ. The parameter λw > 0
controls the adaptiveness of the sample weights dk . Changing
λw leads to a different degree of flexibility in the weights
dk , which will be discussed in the later part – ‘Analysis
of λw’. Note that, we use ‘d2’ rather than ‘d’ in Eq. (9).
This is because dk should be reserved in the differentiation
of Ed w.r.t. dk , which is shown in following Eq. (12) and
Eq. (13).

2) Optimization: We extract the function Ed w.r.t. d and
rewrite it in terms of scalar as

Ed(d) = λy

∑
k

|dk(yk − y∗
k )2| + λw

∑
k

| d2
k

wk
|

s.t.

{
dk ≥ 0∑

k dk = μ
, k = 1, 2 . . . N. (10)

Eq. (10) can be regarded as a constraint optimization prob-
lem. To optimize Eq. (10), we use Augmented Lagrange
Method (ALM) [54] to solve for d. We temporarily ignore
the inequality constraint dk ≥ 0 and introduce Lagrange
multipliers for the equality constraint,

Ed(d)=
∑

k

(λy |dk(yk − y∗
k )2|+λw| d2

k

wk
|)−η(

∑
k

dk −μ), (11)

where η > 0 denotes the Lagrange multiplier. Differentiation
w.r.t. dk gives,

∂ED

∂dk
= (Lk + 2λw

dk

wk
) − η, (12)

where we denote Lk = λy(yk − y∗
k )2. The stationary

point is computed by setting the partial derivatives to
zero,

∂ED

∂dk
= 0 ⇔ dk = η − Lk

2λw
wk . (13)

The Lagrange multiplier η is computed by summing both
sides of Eq. (13) over k and using

∑
dk = ∑

wk = μ,∑
k

dk =
∑

k

η − Lk

2λw
wk ⇔

μ =
∑

k

η

2λw
wk −

∑
k

Lk

2λw
wk ⇔

η = 2λw + 1

μ

∑
k

Lkwk . (14)

Combining (14) and (13) we have

dk = wk + wk

2λwμ
(

N∑
l=1

Llwl − Lk), (15)

where Ll = λy(yl − y∗
l )2.

Then we take into account the ignored constraint dk ≥ 0,
and we define the constant2

δ = min
k

2μwk · |wk(

N∑
l=1

Llwl − Lk)|−1. (16)

This choice ensures that dk > 0, ∀k if 0 < 1
λw

< δ. The
inequality constraint is thus satisfied for 0 < 1

λw
< δ.

3) Analysis of λw: We analyze the effect of λw by consider-
ing the extreme cases of decreasing (λw → 0) and increasing
(λw → +∞) the flexibility parameter. 1) λw → 0: This
corresponds to removing the last term in Eq. (9), implying
no regularization on dk . For the fixed Y and Y∗, the energy
function Eq. (9) is minimized by setting smaller values to
dk to those samples in which yk is close to y∗

k and larger
values to dk when yk is far from y∗

k . That is easy to make
the weighting map lose the spatial constraint, if the last
term in Eq. (9) is removed. Therefore, it is imperative to
use a regularization on the weights dk . 2) λw → +∞: By
introducing Lagrange multipliers, from Eq. (15) it can be
shown that dk → wk when λw → +∞. Thus, increasing
the parameter λw also reduces the flexibility of the weights dk

2Please see the Appendix for more details.
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about the prior weights wk . The constant weight distribution
in Eq. (6) is therefore obtained in the limit λw → +∞ by
setting dk = wk . This way, the fixed spatial distribution w
used in Section III-B is a special case of d. The dynamic
weight distribution can be seen as a generalization of Eq. (6)
by introducing flexible sample weights dk .

D. The New Tracking Scheme

To evaluate the influence of the proposed weight constrained
training samples, we choose two famous state-of-the-art CF
based trackers, i.e., Staple [20] and BACF [19] as the baseline
methods. In the following, we denote the proposed tracker
based on Staple [20] and BACF [19] as WSCFSt and WSCFBA
respectively. Similar to [17], we initialize the spatial weight
map as a 2D Gaussian-shape map as shown in Fig. 2, then w
is the vectorization of the weight map. For fair comparison,
the proposed methods use the same features as our baseline
methods. Specifically, following BACF, we employ 31-channel
HOG features [55] using 4 × 4 cells multiplied by a Hann
window [11] in WSCFBA. For WSCFSt, we combine the
HOG features and the global color histogram as in [20]. The
parameters λy are set to 0.5 and 3 for WSCFSt and WSCFBA,
respectively. We set λw = 1

κδ (0 < κ < 1) to satisfy the
constraint of 0 < 1

λw
< δ and δ is calculated by Eq. (16) and

κ is set as 0.9 and 0.5 in WSCFSt and WSCFBA, respectively.
Besides, we fix all the other parameters of the baseline trackers
for fair comparison. We further discuss the influence of the
parameters in Section IV-D.

The formal description of the proposed WSCF tracking
scheme is shown in Algorithm 1. For scale estimation in the
algorithm, following the most previous CF-based trackers [17],
[19], we apply the filter on multi-scale searching areas for
scale estimation [24]. Specifically, the learned filter f is applied
on S searching areas with different covered regions, where
the searching areas have been resized into the same size as
the filter and S denotes the number of scales. This returns
S correlation outputs.We employ the interpolation strategy
in [17] to calculate detection scores of each output. The scale
with the maximum score among all the outputs is taken as the
optimal scale.

IV. EXPERIMENTAL RESULTS

A. Setup

1) Datasets and Metrics: The proposed method is imple-
mented in MATLAB and runs on a desktop computer with an
Intel Core i7 3.4 GHz CPU. We evaluate the proposed method
on five standard benchmarks: OTB-2013, OTB-2015, VOT-
2018, TC-128 and LaSOT. The first two OTB datasets contains
50 and 100 videos, respectively. We use two acknowledged
metrics, i.e., precision and success rate under the OPE (one-
pass evaluation) for quantitative evaluation. The precision
metric measures the distance between the detected target
locations and those of the ground truth. The success rate
metric measures the intersection-over-union (IoU) between
predicted and ground truth bounding boxes. For precision
metric, we use a threshold, i.e., 20 pixels to judge whether a
tracker is successful at each frame and calculate the percentage

Algorithm 1 WSCF Tracking Scheme

of successful frames out of all the frames in each sequence. For
success rate metric, we calculate average success percentages
w.r.t. different overlap ratio thresholds and obtain success plot
and after that the area under curve (AUC) of each plot can be
calculated as the success rate AUC score. The VOT-2018 [56]
has 60 videos and re-initializes the object bounding box when
the tracker fails to track the target. The expected average
overlap (EAO) considers both bounding box overlap ratio
– accuracy, and the failures times (re-initialization times) –
robustness, which serves as the major evaluation metrics. The
VOT-2018 also provides the EAO score with standard (base-
line) and real-time experimental setup. The latter requires
predicting bounding boxes faster or equal to the video frame-
rate. TC-128 [57] contains 128 color sequences and it is used
to explore the ability of trackers to encode color information.
LaSOT [58] dataset is a recently proposed large-scale video
dataset for visual object tracking which consists of 1,400 long-
term sequences. Here, we report the results on its testing subset
which contains 280 sequences with 690K frames. Following
the metrics of OTB dataset, TC-128 and LaSOT also adopt
the AUC of success plot and precision at 20 pixels as the
evaluation metrics.

2) Comparison Methods: We compare the proposed method
with 10 state-of-the-art trackers. Besides our baseline trackers
i.e., Staple [20] and BACF [19], there are six hand-crafted fea-
tures based trackers, i.e., KCF [12], DSST [21], SAMF [24],
DLSSVM [7], SRDCF [17], CSR-DCF [18], and two deep
feature based methods including HCF [25] and HDT [26].
Among them, KCF, DSST, SAMF, Staple, SRDCF, CSR-DCF
and BACF are classical CF based trackers which obtain the
performance improvement in filter learning. Besides, HCF and
HDT are deep feature boosted CF trackers, DLSSVM is a
SVM based tracker.
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TABLE I

ATTRIBUTES BASED SUCCESS RATE AUC SCORES FOR WSCFSt, WSCFBA AND OTHER 12 STATE-OF-THE-ART TRACKERS ON OTB-2015. THE BEST
THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE RESPECTIVELY. ⇑ DENOTES THE IMPROVEMENT COMPARED TO BASELINE TRACKER

Fig. 3. Precision plots (left) and success plots (right) of both the proposed
and comparison methods on OTB-2013 (first row) and OTB-2015 (second
row) benchmark. The legend contains the average distance precision score at
20 pixels and the AUC of success plot of each method.

B. Comparative Results

1) Comparison Results on OTB: We evaluate the overall
performance of the proposed method and compare with the
baseline methods and other 10 state-of-the-art trackers on
OTB-2013 and OTB-2015 benchmarks. As shown in the first
row of Fig. 3, in terms of precision score, our methods
WSCFBA and WSCFSt outperform the baseline methods and
achieve 3.7% and 2.4% improvement over BACF and Staple,
respectively. In terms of the AUC of success plots, the pro-
posed WSCFBA and WSCFSt also get better performance
than the baseline methods and achieve the state-of-the-art
performance. We can see that both WSCFBA and WSCFSt
outperform the deep trackers HCF, HDT. We can see similar
results on OTB-2015 in the second row of Fig. 3. The pro-
posed WSCFBA and WSCFSt outperform the baseline methods
BACF and Staple in both precision score and AUC score of

success rate. We can also see that several deep trackers, e.g.,
HDT, obtain higher precision scores than the proposed method.
However, our WSCFBA obtains the highest performance in
success plot AUC score, which is a more comprehensive
metric to evaluate the object tracking performance.

2) Attribute Based Comparison: To more comprehensively
evaluate the proposed tracker in various scenes, we present
tracking performance in terms of different attributes on
OTB-2015. The 100 videos of OTB-2015 are grouped into
11 subsets according to 11 attributes, i.e., occlusion (OCC),
background clutter (BC), illumination variation (IV), fast
motion (FM), deformation (DEF), scale variation (SV), out-
of-plane rotation (OPR), in-plane rotation (IPR), out-of-view
(OV), motion blur (MB), and low resolution (LR). Table I
shows the success plot AUC of 10 comparison methods and
the proposed WSCFBA and WSCFSt on 11 subsets. In terms of
results on 11 subsets, WSCFBA gets the best results on 7 sub-
sets of OCC, BC, IV, FM, DEF, SV, and OPR and the second
best performance on 2 subsets of IPR and LR. We can see that
WSCFSt outperforms the baseline tracker Staple on 10 subsets
except for LR. WSCFBA also outperforms BACF on 8 subsets
except for the comparable results on SV subset, and inferior
results on OV and LR subsets. Note that, the subsets of OV
and LR contain 14 and 9 sequences respectively, which are two
attributes with the fewest sequences. Such small evaluation set
can be easily biased.

3) Comparison Results on VOT: In addition to OTB bench-
mark, we also evaluate the proposed method on VOT-2018.
We compare WSCFSt, WSCFBA with the baseline trackers,
i.e., Staple [20] and BACF [19], and five methods that par-
ticipate in the VOT challenge, i.e., KCF [12], DSST [21],
SAMF [24], SRDCF [17] and CSR-DCF [18]. As shown
in Table II, we can see that both WSCFSt and WSCFBA out-
perform the baseline methods Staple and BACF in accuracy,
robustness and expected average overlap (EAO) under baseline
experiments, respectively. In terms of accuracy, WSCFSt
gets the best performance which improves the performance
of Staple by 3.5%. Note that, CSR-DCF provides the best
performance on robustness and baseline EAO score. However,
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TABLE II

COMPARATIVE RESULTS ON VOT-2018 IN TERMS OF THE AVERAGE
ACCURACY (ACCURACY), AVERAGE FAILURES (ROBUSTNESS), EAO

UNDER BASELINE EXPERIMENTS AND EAO UNDER

REALTIME EXPERIMENTS

as shown in the last column, it provides a very poor EAO
score in real-time experimental setting, which is even lower
than KCF. This is because CSR-DCF runs at ∼ 8 fps, far
away from real-time speed. The proposed WSCFSt gets the
best EAO score on real-time experiments, which can run at a
real-time speed on VOT dataset.

4) Comparison Results on TC-128: We show the evaluation
results on TC-128 in Fig. 4. Clearly, with our WS based
method, the precision scores of BACF, and Staple get the
relative improvements at 2.3% and 1.8%, respectively. For
sucess rate AUC scores, WSCFBA and WSCFSt get 2.9%
and 2.2% relative improvements over their baseline methods,
respectively. We can see that DLSSVM gets the best perfor-
mance among the comparison methods. Note that, although
DLSSVM gets the highest score in term of precision, for the
compositive metric – success rate AUC score, our methods
can obtain the similar (WSCFBA at 49.9%) or better (WSCFSt
at 51.1% ) results compared to DLSSVM.

5) Comparison Results on LaSOT: We further evaluate the
proposed method on LaSOT dataset. As shown in Fig. 5,
we can see that the proposed method improves both BACF
and Staple with 3.3% and 2.5% relative increments on pre-
cision scores, respectively. In terms of success rate AUC
score, the relative increments are 2.3% and 3.7%, respec-
tively. We can also see that, compared to original baseline
tracker Staple with a success rate AUC score of 24.3%,
the proposed method WSCFSt gets the AUC score of 25.2%,
which outperforms several trackers that are superior to Staple,
e.g., CSR-DCF, SRDCF, DLSSVM and HCF, and obtains the
comparative performance with HDT. Moreover, the proposed
method WSCFBA gets the AUC score of 26.5% exceeding
HDT. Above results demonstrate that the proposed WSCF
algorithm not only improves the CF trackers on short-term
sequences, e.g., OTB and TC-128 datasets, but also helps
handle challenges from long-term sequences.

C. Ablation Study

To validate the effectiveness of our method, we show the
results of ablation experiments on OTB-2013 and OTB-2015.

Fig. 4. Precision plots (left) and success plots (right) of both the proposed and
comparison methods on TC-128 benchmark. The legend contains the average
distance precision score at 20 pixels and the AUC of success plot of each
method.

Fig. 5. Precision plots (left) and success plots (right) of both the proposed and
comparison methods on LaSOT benchmark. The legend contains the average
distance precision score at 20 pixels and the AUC of success plot of each
method.

TABLE III

ABLATION STUDY ON OTB-2013 AND OTB-2015 VIA SUCCESS
RATES (% AT IOU > 0.50 AND AUC SCORE)

Specifically, as shown in Table III, Staple and BACF the
two baseline trackers. WSCFSt-no d and WSCFBA-no d use
the fixed weight distribution i.e., w in Eq. (6), to assign the
weights for training samples. The bottom row WSCFSt and
WSCFBA use the dynamically updated weight distribution
i.e., d in Eq. (9), to assign the sample weights. For each
baseline tracker, from the first and second rows we can see that
the weighting for samples by the fixed weight distribution w
can improve the performance of CF based trackers. Moreover,
from the last two rows of each tracker we can also see that the
dynamic updating of the weight distribution by d can further
promote the improvement, which demonstrates the advantage
of adding the updating of w.

To further study the effectiveness of the dynamic weight
distribution presented in Section III-C, we also evaluate
the tracking performance in terms of different attributes on
OTB-2013 and OTB-2015. We select six subsets with
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TABLE IV

ABLATION STUDY ON SIX SUBSETS WITH DIFFERENT ATTRIBUTES IN OTB-2013 AND OTB-2015 VIA SUCCESS RATES (% AUC SCORE)

TABLE V

COMPARATIVE STUDY OF DIFFERENT PARAMETER SETTINGS OF λy , κ ON

OTB-2015 VIA SUCCESS RATES (% AT IOU > 0.50 AND AUC SCORE)

corresponding attributes in which the targets or their back-
grounds have frequent variations over time, i.e., scale variation
(SV), in-plane rotation (IPR), out-of-plane rotation (OPR),
illumination variation (IV), deformation (DEF), occlusion
(OCC). As shown in Table IV, we can see that the proposed
methods, including WSCFSt and WSCFBA, using dynamic
weights d perform better than both the baselines and those
using fixed weights w, on the selected attribute-aware sub-
sets of OTB-2013 and OTB-2015. This way, the dynamic
weight distribution d can better handle the cases where
the targets/backgrounds have over-time changes, therefore it
improves the final accuracy on overall dataset as shown
in Table III.

D. Algorithm Analysis

1) Parameters Selection Analysis: We investigate the per-
formance changes w.r.t. different setups of the two parameters,
i.e., the control parameters λy and λw in Eq. (9). The para-
meter values in WSCFSt and WSCFBA are slightly different
due to the diversity of the baseline methods and we tune
the setups of the parameters on two methods, respectively.
As shown in Table V, we set λy as the original settings and
enlarge/reduce it two times respectively. We can see that the
tracking accuracy changes little with the huge displacement
of λy . Hence, our method is not very sensitive to λy . The
parameter λw in Eq. (9) is determined by two factors, i.e., κ
and δ. The variable δ is calculated online in the tracking
process, thus we only tune the hyperparameter κ . Table V
compares the tracking results on OTB-2015 with different
setups of κ . Clearly, the tracking accuracy changes little with
different κ . In practice, we can see that the tracking results

under different parameter settings all outperform the baseline
trackers, which demonstrates the robustness of the proposed
method.

2) Qualitative Analysis: Qualitative comparisons on several
sequences are shown in Fig. 6. The two sequences dragonbaby
and shaking are selected to show the robustness of trackers
against object deformation. The targets in these two sequences
are head of a baby and a singer, respectively, both have
significant appearance variations when moving and turning.
We can see that BACF fails to track the baby (e.g., #113)
and Staple fails to track the singer (e.g., #31, #295, #335).
The proposed trackers WSCFSt and WSCFBA can track them
continuously against the deformation. The second row in Fig. 6
shows the tracking results on two representative sequences
skater2 and basketball, where the targets are the whole body
of a skater and a basketball player, respectively. The shape of
the targets also vary drastically as the motion of athletes. We
can see that Staple tracker fails to estimate the scale of the
skater (e.g., #351, #339, #373) and both Staple and BACF lost
the basketball player (e.g., #500, #666). Our trackers WSCFSt
and WSCFBA can track the target successfully over the whole
sequence. The third row in Fig. 6 shows the target with severe
or long-term occlusion. In the girl sequence, the girl can be
tracked well until it is occluded by a man in a long term.
Three trackers, i.e. Staple, BACF and CSR-DCF mistakenly
track the man appearing in the foreground (e.g., #457), while
the proposed trackers WSCFSt and WSCFBA can unceasingly
track the target. Similarly in the jogging sequence, both Staple
and BACF lost the runner after leaving the obstruction (e.g.,
#070), while the proposed tracker WSCFBA can keep tracking
her continuously.

3) Failure Cases and Limitations Analysis: We have shown
that proposed training sample weighting does help improve
the tracking accuracy of CF based tracking method. However,
the sample weighting strategy becomes less effective when the
target moves very fast. Specifically, as shown in the last row
of Fig. 6, when the target, e.g. the high jumper, moves fast,
the center localization of the target may be far away between
neighbor frames. As a result, the weight distribution may
assign higher weights to the training samples that contain more
background region instead of the target region, which makes
the updated filter in frame t − 1 less effective in detecting
the target in frame t . Note that, although sample weighting
strategy has such limitation, our method, i.e. WSCF, still
outperforms the baseline trackers on the subset of fast motion
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Fig. 6. Tracking results of WSCFBA, WSCFSt and other four other CF trackers on eight challenging videos in OTB-2015. The last two cases show the
limitation of WSCF based trackers in handing object fast motion.

TABLE VI

COMPARATIVE STUDY OF DIFFERENT EXPERIMENTAL SETTINGS FOR SR AND WS BASED TRACKERS ON OTB-2015 VIA SUCCESS
RATES (% AUC SCORE) AND AVERAGE RUNNING SPEED (FPS)

in OTB-2015, as shown in Table I. This is because the above
sudden motion does not happen frequently in a sequence and
the proposed sample weighting strategy could help improve
tracking accuracy for most of the time.

4) Comparison of WS and SR Model: To compare the pro-
posed weighted samples (WS) based method for CF with the
spatial regularization (SR) in SRDCF, we conduct some track-
ing algorithms with different settings. Specifically, we select
KCF as the baseline and integrate the SR and WS methods to
boost it, respectively. As shown in the the first row of Table VI,
both SR and WS can improve the tracking performance of
KCF. Although both the SR and WS reduce the running
speed of the baseline, the WS based method can still runs
at real-time speed. However, the SR severely pulls down
the speed into 7.8 fps. Besides, we also integrate the scale
estimation (SE) method [17], [24] into the baseline for further
comparison as shown in the second row. We can see that
the WS based method can get comparative accuracy with SR
and maintain a higher running speed. As shown in the last
row, we compare the complete SRDCF [17] algorithm with
our WS based tracker using the same scale of search region,
training data and detection strategy, i.e., WSCF. We can see
that although the tracking performance of WSCF is slightly
lower than SRDCF, WSCF has an approximate seven-time
speedup compared to SRDCF and achieves real-time running

Fig. 7. Precision plots (left) and success plots (right) of both the proposed
method with deep features and state-of-the-art deep learning based methods
on OTB-2015. The legend contains the average distance precision score at
20 pixels and the AUC of success plot of each method.

speed. Moreover, as shown in Fig. 3, the proposed techniques
can be applied to existing trackers, e.g., Staple and BACF,
to obtain further performance gain.

5) Deep Feature Based Tracker: To further assess WSCF,
we exploit the deep features (Norm1 from VGG-M, Conv4-3
from VGG-16) for object representation to enhance our
method WSCFBA. In the following, we name it as WSCFDF
for simplicity. We compare it with several most state-of-the-art
deep learning based methods, including the latest CF trackers:
ECO [38], CFNet [32], and ASRCF [49]; a series of Siamese

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 22,2020 at 12:33:52 UTC from IEEE Xplore.  Restrictions apply. 



7138 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE VII

SUCCESS RATES (% AT IOU>0.50 AND AUC SCORE) OF WSCFSt,WSCFBA VERSUS RELATED TRACKERS, AND THE
CORRESPONDING WEIGHTED AVERAGE SPEEDS ON OTB-2015 DATASET

Network based trackers: SiameseFC [14], SiamDW [59], and
SiamRPN++ [60]; and other methods proposed in 2019:
ATOM [61], GCT [62], TADT [63], DiMP [64], GradNet [65].
The comparison results on OTB-2015 are shown in Fig. 7,
we can see that WSCFDF achieves comparative or better
performance compared to these state-of-the-art deep learning
based methods in term of both the precision and success rate
AUC scores.

6) Speed Analysis: Algorithm efficiency is also an impor-
tant factor for the tracking task. Table VII compares several
related well-known CF trackers, where the speed is measured
on a desktop computer with an Intel Core i7 3.4GHz CPU. We
can see that the proposed WSCFSt and WSCFBA can improve
the baseline Staple and BACF in terms of success rate while
with little sacrifice on tracking speed. Our method WSCFSt
achieves the real-time running speed over 30 fps and WSCFBA
runs near real time at an average of 16 fps, both of which
are more efficient than the spatial regularization based CF
tracking methods, e.g., SRDCF, CSR-DCF. The performance
improvement of WSCFBA is relatively small compared with
WSCFSt, because the real samples used in BACF can alleviate
the boundary effects to some extent.

Note that, the proposed methods do not rely on the offline
trained models and pre-trained deep features, which can
effectively save training time and storage space. Moreover,
our method is implemented on the Matlab platform without
any optimization strategies and can be implemented for real
time applications by further optimizing the code with GPU
acceleration or parallel computing.

V. CONCLUSION

In this paper, we have proposed a fast content-aware spatial
regularization approach for correlated filter (CF), one of the
most popular visual object tracking schemes. Our approach
implicitly weighs circular shifted training samples and solve
the spatially regularized learning of correlation filters in closed
form. This provides a new efficient spatial regularization
way for the CF tracking scheme. Furthermore, to adapt to
temporal variations, we present a content-aware updating
strategy to dynamically optimize the weight distribution by
solving a constrained quadratic optimization problem. Since
the proposed fast content-aware spatial regularization approach
is general for the CF tracking scheme, it is able to help
many CF based trackers to alleviate the boundary effects
without harming their original tracking speed. Particularly, our
approach is used to improve two state-of-the-art CF track-
ers resulting in very promising performance improvement.

On five benchmark datasets, OTB-2013, OTB-2015, VOT-
2018, TC-128 and LaSOT, we have validated the effectiveness
and superiority of our approach over various state-of-the-art
competitors. In the future, we plan to further explore the poten-
tials of our approach to more recent sophisticated CF based
tracking methods, and study its possible application within
other popular tracking scheme, such as Siamese network.

APPENDIX

We discuss the derivation of constraint condition defined in
Eq. (16), which is to guarantee dk > 0. From Eq. (15),

dk = wk + 1

λw
· wk

2μ
�L, (17)

where we denote �L = ∑N
l=1 Llwl − Lk . Given the preset

parameters wk ≥ 0 and μ ≥ 0. 1) If �L ≥ 0, dk will
monotonically increase with 1

λw
and it is easy to get that

dk > 0 when 1
λw

≥ 0. 2) If �L < 0, dk will monotonically
decrease with 1

λw
and dk will get the minimum value when

1
λw

take the maximum. To calculate the upper bound of 1
λw

,
we solve

wk + 1

λw
· wk

2μ
�L = 0, (18)

and then we get

1

λw
= 2μwk · |wk�L|−1. (19)

Thus we take δ = min 2μwk · |wk�L|−1. To sum up,
the constraint condition 0 < 1

λw
< δ will guarantee dk > 0.
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