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ABSTRACT

Compared to fixed cameras, wearable cameras have time-
varying non-specific view coverage and can be used to alter-
nately observe people at different sites by varying the camera
views. However, such view change of wearable cameras
may introduce intervals of transitional frames without useful
information, which brings new challenge for the important
multiple object tracking (MOT) task – existing MOT meth-
ods can not handle well frequent disappearing/reappearing
targets in the field of view, especially in the presence of in-
formationless transitional sequences of frames. To address
this problem, in this paper we propose a Markov Decision
Process with jump state (JMDP) to model the target’s lifetime
in tracking, and use optical flow of the camera motion and the
statistical information of the targets to model the camera state
transition. We further develop a frame-level classification
algorithm to locate the transitional sequence. By combining
all of them, we formulate the proposed non-specific-coverage
MOT problem as a joint state transition problem, which can
be solved by the state transfer mechanism of the targets and
the camera. We collect a new dataset for performance eval-
uation and the experimental results show the effectiveness of
the proposed method.

Index Terms— Multi-human tracking, wearable cam-
eras, abnormal frames

1. INTRODUCTION

Multiple object tracking (MOT), especially multiple human
tracking (MHT), has wide applications in video surveillance
and human-machine interaction. Most existing methods use
fixed cameras for video collection, whose field of view (FOV)
is unchanged and limited. In contrast, wearable cameras,
e.g., GoPro and Google glass, worn by and moved with wear-
ers, have time-varying non-specific observation coverage [1–
5] and can be used to track and observe people at different
sites by varying the camera views, which enables more flex-
ible and wide-range outdoor video surveillance of crowded

scenes. The goal of this paper is to study the new problem of
MHT in non-specific fields using wearable cameras.

This is a highly challenging problem given the indetermi-
nate change of the camera FOVs. We consider two typical
situations in this paper: 1) camera view may suddenly move
alway from any targets, leading to frames without any people,
e.g., viewing the sky or ground for a break, and 2) the camera
FOV is quickly changed to cover different human groups at
different sites, also leading to temporal intervals without use-
ful information. In either situation, the camera FOV exhibits a
sudden and large change and we refer to the resulting interval-
s of transition as a ‘transitional sequence’. Figure 1(a) shows
a sample video of situation 1) where the transitional sequence
contains no targets of interest. By taking the first and the last
frames of transitional sequence as the cut-off boundary, this
video can be divided into three disjoint video segments shown
in Fig. 1(b). Although high inter-frame continuity is shown
within each segment, the inter-frame continuity between the
segments, i.e., at the boundary frames a and b in Fig. 1(b), is
very poor. An example of situation 2) is shown in Fig. 1(c),
where the camera alternately change the view to observe d-
ifferent groups of people at different sites with transitional
sequences. In both situations, the resulting videos lack the
throughout inter-frame continuity and appearance consisten-
cy that are required by most existing MOT methods [6–8].
While few existing MOT methods may partially address this
problem by integrating a person re-identification mechanis-
m [9–11], they substantially increase the searching space and
still have difficulty in handling targets of similar appearance
but in different groups.

In order to handle the above two common situations, in
this paper we build a Markov Decision Process [12] with jump
state (JMDP) for each target to complete the tracking deci-
sion and state transition. Meanwhile, a camera state transition
mechanism is introduced to judge the FOV of camera at each
time. For that, we also train a binary classifier to accurately
identify the beginning and end of each transitional sequence
based on the location information of the targets and the back-
ground information of the image in each frame.
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Fig. 1. An illustration of transitional sequences caused by (a, b) temporally moving the camera view away from the same group
of targets and (c) changing the camera view from one site to another to observe different groups of people.

Our main contributions are: (1) To the best of our knowl-
edge, we are the first to study the multiple human tracking
(MHT) in non-specific coverage using the wearable camer-
a, by considering both the cross-transitional-sequence MHT
for each group and switch-group MHT for multiple groups;
(2) We establish a Markov Decision Process with jump state
(JMDP) and a camera state transition mechanism to handle
the non-specific-coverage tracking problem; (3) We collect a
new dataset of videos with various kinds of transitional se-
quences for performance evaluation. We have released this
dataset to public1.

2. PROPOSED METHOD

In this section, we first introduce Markov Decision Processes
(MDP) with jump state to model the tracking shown in Fig. 1.
We further propose the camera state transition (CST) model
to identify the jump state caused by the camera movement and
a Transitional Sequence Identification (TSI) model to locate
the transitional sequence.

2.1. MDP with Jump State (JMDP)

Given a new input video frame, a JMDP is first initialized for
each detected target, and the state is initialized to active. Nex-
t, we apply a single object tracking (SOT [13, 14]) approach,
e.g., ECO [15], to keep tracking each target. The target state
is set as tracked when the target maintains the active state on
more than α frames. When the tracking process gets unreli-
able, e.g., the tracking score is low or the tracking result is
inconsistent with the detection result, we suspend the track-
er and set the target to the lost state. We then perform data
association in DMAN [10] to compute the similarity between
the tracklet and detections that are not covered by any tracked
target. After that, the similarity scores are used in the Hun-
garian algorithm [16] to obtain the assignment between the
detections and the lost targets. According to the assignment,
lost targets that are linked to object detections are transferred
to tracked state. Otherwise, they stay as lost. In particular,
whenever entering a transitional sequence, the states of all

1https://github.com/github19970909/NSMHT

targets are transferred to jump state immediately. The specif-
ic state transitions are described in Fig. 2.
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Fig. 2. The target JMDP in our framework.

Active: It is the initial state of any target. Whenever an object
is detected by the object detector, it will enter sactive.
Tracked: A tracked target can keep as stracked, or transition
to slost if the target is lost due to some reason, such as occlu-
sion or disappearance from the field of view of the camera.
Lost: A lost target can stay as slost, or go back to stracked if
it appears again, or transition to sinactive if it has been lost for
a sufficiently long time.
Jump: At the beginning of a transition frame sequence, all
the targets with any of the above states will enter sjump im-
mediately. First, we save the current state of each target as sp,
and then transfer it to sjump, e.g. for the actions j1, j3, j5 in
Fig. 2. When the camera moves back to these targets again,
we associate the current detection results with the targets with
state sjump. We need to determine whether to go back to the
previously saved state sp according to the associated score d
calculated by DMAN [10], as shown by actions j2, j4, j6 and
j7, in Fig. 2. In this case, the MDP transforms is

si,t =

{
sp, if s = sjump and d > τ
sjump, otherwise,

(1)

Inactive: It is the terminal state for any target and an inactive
target stays as inactive forever.

The above is our overall tracking framework. Howev-
er, when tracking among multiple groups at different sites
as shown in Fig. 1(c), there are multiple transition sequences
J = {J1 ∪ J2 ∪ ... ∪ Ji} in a video. It is essential to know
which group the camera is looking at before and after each
transitional sequence Ji.
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2.2. Camera State Transition (CST)

To handle the above two situations, e.g., those shown in
Fig. 1(a) and (c), we propose a model of camera state transi-
tion, for recording the current view direction of the camera.
First, a camera state c is initialized to (0, 0) for each target
appearing in its current FOV, and (0, 0) is used to represent
the target is re-observed (after disappearing for a while) by
the camera. When the tracking enters the start (e.g., frame
a in Fig. 1(b)) or the end (e.g., frame b in Fig. 1(b)) of the
transitional sequence Ji, the camera state transition is per-
formed for each target according to its [N,C] values, where
we use N ∈ {1,−1} to show the trend of the number of
people at a frame, where N = 1 indicates the number of
people is increasing, which means that the camera is turn-
ing to new people group as f12+,f2n+,fn2+ shown in Fig. 3.
N = −1 indicates that the number of people is decreasing,
which means that the camera is leaving the current group as
f12
−,f2n−,fn2− shown in Fig. 3. Considering all possible

directions of the camera, we divide the camera motion into
eight directions, and get the moving direction of the camera
according to the optical flow direction. C is used to repre-
sent the moving direction of the camera, C =< Ch, Cv >,
Ch/Cv ∈ {1,−1, 0} is the horizontal/vertical direction,
where 1 represents the moving direction is right/up, and -1
represents the moving direction is left/down, 0 means there is
no movement in the horizontal or vertical direction.
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Fig. 3. Camera state transition. fjj′
−/fjj′

+ indicates the
number of people is reducing/increasing from group j to j′.

We update the camera state c at time t as

c = c+ Ct × [(Nt �−1) + (Nt � 1) (Ct ⊕ Ct−1)] , (2)

where Nt and Ct are defined as above with a frame index
t, and t denotes the frame number of the start or end of the
identified transitional sequence. Here � and ⊕ denote the
xnor and xor operations, respectively. For example,

Nt �−1 =

{
1, if Nt = −1
0, otherwise,

(3)

Ct ⊕ Ct−1 =

{
1, if Ct 6= Ct−1
0, otherwise.

(4)

2.3. Transitional Sequence Identification (TSI)

In order to find the start (e.g., frame a in Fig. 1(b)) and end
(e.g., frame b in Fig. 1(b)) of transitional sequence mentioned
before, we need to recognize whether the frame is in the tran-
sitional sequence or not, which we refer to as frame-based
transitional sequence identification.

There are several clues to help transitional sequence i-
dentification. First, when the camera view is significantly
changed in the considered two situations, it usually starts and
ends with a sudden and dramatic camera movement. There-
fore, a frame with a very large optical flow is more likely to
be the start of transitional sequence. Second, the change in
the number of people in the FOV can also be used to help
recognize transitional sequence. Following these clues, for
each frame t, we first calculate the optical flow between frame
t − 1 and t and take the average value Ot. Second, we cal-
culate Pt, the number of people detected on frame t. Finally,
we construct a 12-dimensional feature vector and train a bina-
ry support vector machine (SVM) classifier with RBF kernel
[Ot−6, · · · , Ot, Pt−6, · · · , Pt] for identifying the transitional
sequence. Influence of different features in this method will
be discussed in Section 3.4.

frame t-1 frame t

Fig. 4. The red boxes in frame t are the predictions of the
position of yellow boxes in frame t-1 by directly using the
constant velocity motion model.

2.4. Transitional Sequence Alignment (TSA)

In the transitional sequence, the camera was accompanied by
the sudden and dramatic movement. At this time, the posi-
tion of an object usually changes considerably, as shown in
Fig. 4, where it is unreliable to use a constant velocity motion
model [17, 18] to predict motion consistency as in most pre-
vious MOT tracking methods. Thus, we proposed to perceive
the camera motion using the Camera State Transition (CST)
model. When the camera moves quickly during the transi-
tional sequence, we apply the transitional sequence alignment
(TSA), e.g., Enhanced Correlation Coefficient (ECC) [19], to
align the images. Then we apply the constant velocity motion
model on the aligned images for more accurate tracking.

3. EXPERIMENTS

3.1. Dataset and Metrics

We do not find publicly available dataset for non-specific
coverage switch-group tracking. Therefore, we use head-
mounted GoPro to collect a new video dataset, which con-
sists of 34 videos of length from 400 to 1,500 frames, in total
28,630 frames, taken at 5 different outdoor sites. Specifical-
ly, on 16 videos, it switches to tracking between crowd and
non-crowd scenes; on 12 videos, it switches tracking between
two groups of people; and on 6 videos, it switches tracking
between three groups of people. We apply the standard MOT
metrics for evaluating the tracking performance [20–22],
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including multi-object tracking precision (MOTP) and multi-
object tracking accuracy (MOTA). The main motivation and
aim in this paper is to continuously track the multiple targets
against the quick motion and switch of the wearable cameras.
Therefore, we care more about the ID-related metrics, i.e.,
IDP, IDR and IDF1 in our experimental evaluation.

3.2. Setup

We use the general YOLOv3 [23] detector for human detec-
tion. For single object tracking, we use the same features as
in ECO-HC (i.e., HOG and Color Names) [15]. We use D-
MAN [10] as the baseline method. And choose two MOT
methods, i.e., MDP [12], and Tracktor++ [11] as the com-
pared methods. Among them, Tracktor++ converts a detector
into a Tracktor with a re-identification to improve identity p-
reservation across frames. MDP and DMAN are single object
tracker based methods, where DMAN learns deep appearance
features for data association. For fair comparison, we use the
same object detector for all the methods, including the pro-
posed method and these comparison methods.

Table 1. Comparative results of different methods.
Method IDF1 IDP IDR MOTA MOTP
MDP 50.3 51.2 49.5 73.6 82.3
DMAN 55.1 55.0 55.2 79.6 81.4
Tracktor++ 47.5 51.4 44.1 77.2 83.3
Ours 72.9 72.1 73.7 78.4 81.2

3.3. Results

We evaluate the proposed method on all the videos in our
dataset against the state-of-the-art methods and the results are
shown in Table 1. We find that although using the same ob-
ject detector as DMAN in human detection, our method out-
performs DMAN by a wide margin in the ID-related metric-
s. As shown the last row in Table 1, on the overall dataset,
our method achieves a comparable MOTA score at 78.4%
and performs favorably against the state-of-the-art methods in
terms of identity-preserving metrics. We improve by 17.8%
in IDF1, 17.1% in IDP, 18.5% in IDR compared with the sec-
ond best performed MOT method listed in this table, which
demonstrates the merits of the proposed method in maintain-
ing the target ID. Note that, our method does not track the
targets in the transitional sequence, which results in some
missed detection, i.e., the false positive (FP) detections dur-
ing tracking, and decreases the MOTA score to some extent.
This problem can be alleviated by activating the re-tracking
when the targets return to the camera’s FOV. Similarly, at the
beginning of the transition frames, we can ceaselessly track
the targets until all of them disappear in the camera’s FOV.

Moreover, we divide the dataset into one-group, two-
group and three-group videos and evaluate the MOT perfor-
mance, respectively. As shown in Table 2, we can first find
that the tracking results in one-group case shows better per-
formance than the two-group and three-group cases. This is

due to the identification of transitional sequences in multiple
groups is more complicated than single group. Meanwhile,
the result reflects the importance of the accuracy of transi-
tional sequence identification to the tracking result.

Table 2. Results on the one-, and multiple-group data.

Method
one group multiple groups

IDF1 IDP IDR IDF1 IDP IDR
MDP 50.2 50.0 50.4 50.5 52.8 48.3
DMAN 53.7 53.2 54.1 56.9 57.3 56.5
Tracktor++ 44.4 47.0 42.1 51.5 57.6 46.6
Ours 74.7 73.6 75.8 70.6 70.1 71

3.4. Ablation Study

The effectiveness of each proposed module is shown in Ta-
ble 3. Clearly, the method with JMDP and CST can better
maintain the ID of the tracked targets. In the last row in
Table 3, we demonstrate the contribution of TSA in our al-
gorithm just like the analysis given in Sec. 2.4. The whole
framework we proposed achieves 72.9% in IDF1.

Table 4 reveals the effects of different features in TSI:
‘w/o O’ and ‘w/o P’ denote the proposed features without the
optical flow and the number of people in identifying the tran-
sitional sequence, respectively. We can see that using only
one of them cannot achieve performance as good as the pro-
posed method that combines both of them.

Table 3. Ablation study on the use of TSA.
Method IDF1 IDP IDR MOTA MOTP
Baseline 55.1 55.0 55.2 79.6 81.4
Baseline+JMDP+CST 64.8 64.7 64.9 79.6 81.3
Baseline+JMDP+CST+TSA 72.9 72.1 73.7 78.4 81.2

Table 4. Ablation study on the use of different features.
Method IDF1 IDP IDR MOTA MOTP
w/o P 56.1 56.0 56.2 79.7 81.4
w/o O 72.6 71.7 73.6 77.9 81.2
ours 72.9 72.1 73.7 78.4 81.2

4. CONCLUSION

In this paper, we proposed a Markov Decision Process with
jump state (JMDP) and a camera state transition (CST) mech-
anism to handle the non-specific-coverage multiple human
racking problem. To evaluate our method, we collect a new
dataset with multiple types of transitional sequence. Experi-
mental results on our collected datasets verified the effective-
ness of the proposed method. Through the above efforts, we
just hope to provide the fundamental resources to extend the
MOT problem to wearable-camera videos, which can facili-
tate the video analysis to more application scenarios.
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